1
|
Vaglica A, Porrello A, Ilardi V, Bruno M. The essential oil chemical composition of a rare ethnopharmacoligical plant: Verbascum creticum (L.) Cav. Nat Prod Res 2024:1-7. [PMID: 38988304 DOI: 10.1080/14786419.2024.2377310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
The genus Verbascum L, belonging to the Scrophulariaceae family, is native to Europe, Africa and Asia. The use of plants of this genus in the popular medicine has been largely reported. In the present study the chemical composition of the essential oil from aerial parts of Verbascum creticum (L.) Cav., a rare plant, never previously investigated, known for its anti-inflammatory properties of the intestinal mucosa and in the treatment of acute and chronic catarrhs, growing in Algeria, Baleares, Calabria, Sardinia, Sicily, Spain and Tunisia, was evaluated by GC-MS. The main components of its essential oil (Vc) were 1-octen-3-ol (23.9%), cis-3-hexen-1-ol (9.4%), phenylethanal (4.6%), and 2-methyl-benzofurane (4.6%). The comparison with all the other studied essential oils of genus Verbascum is discussed. Furthermore, a review of the use of the Verbascum species in the popular medicine has been carried out.
Collapse
Affiliation(s)
- Alessandro Vaglica
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Antonella Porrello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Vincenzo Ilardi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Centro Interdipartimentale di Ricerca 'Riutilizzo bio-based degli scarti da matrici agroalimentari' (RIVIVE), University of Palermo, Palermo
| |
Collapse
|
2
|
Dursun İ, Felek İ, Çobanoğlu DN. Analyzing the Antioxidant Activity and Fatty Acid Composition of Monofloral Mullein (Verbascum sp.) Pollen Oil obtained via Various Extraction Techniques. Chem Biodivers 2024; 21:e202400117. [PMID: 38366982 DOI: 10.1002/cbdv.202400117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/19/2024]
Abstract
This study focused on characterizing fatty acids and evaluating the antioxidant properties in oils extracted from mullein (Verbascum sp.) bee-collected pollen, utilizing soxhlet and ultrasound-assisted methods with acetone and hexane solvents. Soxhlet extraction demonstrated high efficiency in mullein bee pollen oil extraction. The highest levels of total phenolic content (TPC), total flavonoid content (TFC), DPPH⋅, and ABTS⋅+ activities (41.07±1.43 mg GAE/g extract; 1.86±0.01 mg QE/g extract; 16.23±0.68 mg TE/g extract; 56.88±0.43 mg TE/g extract, respectively) were observed in oil extracted using the soxhlet method with acetone solvent. Conversely, ultrasound-assisted extraction with hexane yielded oils rich in saturated fatty acids, while acetone extraction contained higher monounsaturated fatty acids. Palmitic, linoleic, and oleic acids were predominant in the extracted oils. This study introduces, for the first time, the identification of fatty acids found in mullein bee pollen oil, along with an examination of their antioxidant properties. The choice of solvent was found to significantly influence compound extraction compared to the extraction method.
Collapse
Affiliation(s)
- İnan Dursun
- Department of Crop and Animal Production, Vocational School of Food, Agriculture and Livestock, Bingöl University, 12000, Bingöl, Türkiye
- Central Laboratory Application and Research Center, Bingöl University, 12000, Bingöl, Türkiye
| | - İkranur Felek
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bingöl University, 12000, Bingöl, Türkiye
| | - Duygu Nur Çobanoğlu
- Department of Crop and Animal Production, Vocational School of Food, Agriculture and Livestock, Bingöl University, 12000, Bingöl, Türkiye
| |
Collapse
|
3
|
Yagi S, Nilofar N, Uba AI, Caprioli G, Mustafa AM, Angeloni S, Koyuncu I, Seker F, Polat R, Supti SJ, Tasnim F, Al Dhaheri Y, Zengin G, Eid AH. Elucidating the chemical profile and biological studies of Verbascum diversifolium Hochst. extracts. Front Pharmacol 2024; 15:1333865. [PMID: 38352148 PMCID: PMC10862011 DOI: 10.3389/fphar.2024.1333865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/03/2024] [Indexed: 02/16/2024] Open
Abstract
The present study was designed to evaluate the chemical composition, antioxidant, enzyme inhibition and cytotoxic properties of different extracts from aerial parts of V. diversifolium (family Scrophulariaceae), a plant that is native to Lebanon, Syria and Turkey. Six extracts, namely, hexane, dichloromethane (DCM), ethyl acetate (EtOAc), ethanol (EtOH), 70% EtOH, and water (aqueous) were prepared by maceration. The EtOH extract was predominated by the presence of rutin (4280.20 μg g-1) and p-coumaric acid (3044.01 μg g-1) while the highest accumulation of kaempferol-3-glucoside (1537.38 μg g-1), caffeic acid (130.13 μg g-1) and 4-hydroxy benzoic acid (465.93 μg g-1) was recorded in the 70% EtOH, aqueous, and EtOAc extracts, respectively. The EtOH (46.86 mg TE/g) and 70% EtOH (46.33 mg TE/g) extracts displayed the highest DPPH radical scavenging result. Both these extracts, along with the aqueous one, exerted the highest ABTS radical scavenging result (73.03-73.56 mg TE/g). The EtOH and 70% EtOH extracts revealed the most potent anti-AChE (2.66 and 2.64 mg GALAE/g) and anti-glucosidase (1.07 and 1.09 mmol ACAE/g) activities. The aqueous extract was the most efficacious in inhibiting the proliferation of prostate cancer (DU-145) cells with an IC50 of 8.71 μg/mL and a Selectivity Index of 3.7. In conclusion, this study appraised the use of V. diversifolium aerial parts as a potential therapeutic source for future development of phytopharmaceuticals that target specific oxidative stress-linked diseases including diabetes, cancer, cardiovascular disease, and Alzheimer's disease among others.
Collapse
Affiliation(s)
- Sakina Yagi
- Department of Botany, Faculty of Science, University of Khartoum, Khartoum, Sudan
- Université de Lorraine, INRAE, LAE, Nancy, France
| | - Nilofar Nilofar
- Physiology and Biochemistry Research Laborotory, Department of Biology, Science Faculty, Selcuk University, Konya, Türkiye
- Department of Pharmacy, Botanic Garden “Giardino dei Semplici” “Gabriele d’Annunzio” University, Chieti, Italy
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, Türkiye
| | | | | | | | - Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Türkiye
| | - Fatma Seker
- Department of Biology, Science Arts Faculty, Harran University, Sanliurfa, Türkiye
| | - Rıdvan Polat
- Department of Landscape Architecture, Faculty of Agriculture, Bingol University, Bingöl, Türkiye
| | - Sumaiya Jahan Supti
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Faria Tasnim
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Yusra Al Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laborotory, Department of Biology, Science Faculty, Selcuk University, Konya, Türkiye
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Doha, Qatar
| |
Collapse
|
4
|
Mavroeidis A, Stavropoulos P, Papadopoulos G, Tsela A, Roussis I, Kakabouki I. Alternative Crops for the European Tobacco Industry: A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:236. [PMID: 38256796 PMCID: PMC10818552 DOI: 10.3390/plants13020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
Tobacco (Nicotiana tabacum L.) is a major industrial crop that has being cultivated for centuries for the manufacturing of cigarettes, cigars, and other smoking products. Due to its negative effects on both human health and the environment, the European Union has adopted strict policies that aspire to reduce the consumption of tobacco. Herbal cigarettes are alternative smoking products that are often advertised as healthier than conventional tobacco cigarettes and are especially popular in Asian markets. Even though the available literature suggests that they are equally detrimental to human health, the introduction of tobacco-alternative crops (TACs) to the European tobacco industry could smoothen the abandonment of tobacco, and eventually smoking products altogether, in the EU. The aim of the present systematic review was to compile a list of possible TACs that could be incorporated in the European smoking industry, and highlight their strengths and weaknesses. The most dominant crops in the literature (and in the existing market products) were calendula (Calendula officinalis L.), mullein (Verbascum thapsus L.), ginseng (Panax ginseng C.A.Mey.), tea (Camellia sinensis (L.) Kuntze), chamomile (Matricaria chamomilla L.), and mentha (Mentha spp.). Even though these crops are promising, further research is required for their incorporation in the European tobacco industry.
Collapse
Affiliation(s)
| | | | | | | | | | - Ioanna Kakabouki
- Laboratory of Agronomy, Department of Crop Science, Agricultural University of Athens, 118 55 Athens, Greece; (A.M.); (P.S.); (G.P.); (A.T.); (I.R.)
| |
Collapse
|
5
|
Symoniuk E, Marczak Z, Brzezińska R, Janowicz M, Ksibi N. Effect of the Freeze-Dried Mullein Flower Extract ( Verbascum nigrum L.) Addition on Oxidative Stability and Antioxidant Activity of Selected Cold-Pressed Oils. Foods 2023; 12:2391. [PMID: 37372603 DOI: 10.3390/foods12122391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of the study was to analyze the influence of mullein flower extract addition on the oxidative stability and antioxidant activity of cold-pressed oils with a high content of unsaturated fatty acids. The conducted research has shown that the addition of mullein flower extract increases the oxidative stability of oils, but its addition depends on the type of oil and should be selected experimentally. In rapeseed and linseed oil, the best stability was found for samples with 60 mg of extract/kg of oil, while in chia seed oil and hemp oil, it was found with 20 and 15 mg of extract/kg of oil, respectively. The hemp oil exhibited the highest antioxidant properties, as evidenced by an increase in the induction time at 90 °C from 12.11 h to 14.05 h. Additionally, the extract demonstrated a protective factor of 1.16. Oils (rapeseed, chia seed, linseed, and hempseed) without and with the addition of mullein extract (2-200 mg of extract/kg of oil) were analyzed for oxidative stability, phenolic compounds content, and antioxidant activity using DPPH• and ABTS•+ radicals. After the addition of the extract, the oils had from 363.25 to 401.24 mg GAE/100 g for rapeseed oil and chia seed oil, respectively. The antioxidant activity of the oils after the addition of the extract ranged from 102.8 to 221.7 and from 324.9 to 888.8 µM Trolox/kg for the DPPH and ABTS methods, respectively. The kinetics parameters were calculated based on the oils' oxidative stability results. The extract increased the activation energy (Ea) and decreased the constant oxidation rate (k).
Collapse
Affiliation(s)
- Edyta Symoniuk
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska St. 159c, 02-787 Warsaw, Poland
| | - Zuzanna Marczak
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska St. 159c, 02-787 Warsaw, Poland
| | - Rita Brzezińska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska St. 159c, 02-787 Warsaw, Poland
| | - Monika Janowicz
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska St. 159c, 02-787 Warsaw, Poland
| | - Nour Ksibi
- Faculty of Sciences of Tunis, University of Tunis El Manar, El Manar I, Tunis 2092, Tunisia
- Center of Biotechnology of Borj Cedria, Laboratory of Aromatic and Medicinal Plants (LPAM), P.O. Box 901, Hammam-Lif 2050, Tunisia
| |
Collapse
|
6
|
Mammari N, Albert Q, Devocelle M, Kenda M, Kočevar Glavač N, Sollner Dolenc M, Mercolini L, Tóth J, Milan N, Czigle S, Varbanov M. Natural Products for the Prevention and Treatment of Common Cold and Viral Respiratory Infections. Pharmaceuticals (Basel) 2023; 16:ph16050662. [PMID: 37242445 DOI: 10.3390/ph16050662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
The common cold is generally considered a usually harmless infectious disease of the upper respiratory pathway, with mostly mild symptoms. However, it should not be overlooked, as a severe cold can lead to serious complications, resulting in hospitalization or death in vulnerable patients. The treatment of the common cold remains purely symptomatic. Analgesics as well as oral antihistamines or decongestants may be advised to relieve fever, and local treatments can clear the airways and relieve nasal congestion, rhinorrhea, or sneezing. Certain medicinal plant specialties can be used as therapy or as complementary self-treatment. Recent scientific advances discussed in more detail in this review have demonstrated the plant's efficiency in the treatment of the common cold. This review presents an overview of plants used worldwide in the treatment of cold diseases.
Collapse
Affiliation(s)
- Nour Mammari
- CNRS, L2CM, Université de Lorraine, 54000 Nancy, France
| | - Quentin Albert
- INRAE, Aix Marseille Université, UMR1163 Biodiversité et Biotechnologies Fongiques, 13288 Marseille, France
- INRAE, Aix Marseille Université, CIRM-CF, 13288 Marseille, France
| | - Marc Devocelle
- SSPC (Synthesis & Solid State Pharmaceutical Centre), V94 T9PX Limerick, Ireland
- Department of Chemistry, Royal College of Surgeons in Ireland, RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, D02 YN77 Dublin, Ireland
| | - Maša Kenda
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| | - Nina Kočevar Glavač
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| | - Marija Sollner Dolenc
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Jaroslav Tóth
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Nagy Milan
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Szilvia Czigle
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Mihayl Varbanov
- CNRS, L2CM, Université de Lorraine, 54000 Nancy, France
- Laboratoire de Virologie, CHRU de Nancy Brabois, 54500 Vandœuvre-lès-Nancy, France
| |
Collapse
|
7
|
Donn P, Barciela P, Perez-Vazquez A, Cassani L, Simal-Gandara J, Prieto MA. Bioactive Compounds of Verbascum sinuatum L.: Health Benefits and Potential as New Ingredients for Industrial Applications. Biomolecules 2023; 13:biom13030427. [PMID: 36979363 PMCID: PMC10046334 DOI: 10.3390/biom13030427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
Verbascum sinuatum (V. sinuatum) is a plant belonging to the Scrophulariaceae family that has been used as an ingredient in traditional medicine infusions for the treatment of many diseases. The aerial part of this plant is a source of bioactive compounds, especially polyphenols and iridoids. Moreover, antioxidant activity studies have shown that V. sinuatum phenolic and flavonoid composition is higher than those in other plants of the same genus. V. sinuatum bioactive compound composition could vary according to the harvesting location, growing conditions of the plants, sample preparation methods, type and concentration of the extraction solvent, and the extraction methods. The obtention of these compounds can be achieved by different extraction techniques, most commonly, maceration, heat assisted extraction, and infusion. Nevertheless, since conventional extraction techniques have several drawbacks such as long times of extraction or use of large amounts of solvents, the use of green extraction techniques is suggested, without affecting the efficiency of the extraction. Moreover, V. sinuatum bioactive compounds have several biological activities, such as antioxidant, anticancer, cardiovascular, antimicrobial, antidiabetic, and neuroprotective activities, that may be increased by encapsulation. Since the bioactive compounds extracted from V. sinuatum present good potential as functional food ingredients and in the development of drugs or cosmetics, this review gives an approach of the possible incorporation of these compounds in the food and pharmacological industries.
Collapse
Affiliation(s)
- Pauline Donn
- Faculty of Science, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Paula Barciela
- Faculty of Science, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Ana Perez-Vazquez
- Faculty of Science, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Lucia Cassani
- Faculty of Science, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Universidade de Vigo, E32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Jesus Simal-Gandara
- Faculty of Science, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Universidade de Vigo, E32004 Ourense, Spain
| | - Miguel A. Prieto
- Faculty of Science, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Universidade de Vigo, E32004 Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
- Correspondence:
| |
Collapse
|
8
|
Rathinasabapathy T, Sakthivel LP, Komarnytsky S. Plant-Based Support of Respiratory Health during Viral Outbreaks. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2064-2076. [PMID: 35147032 DOI: 10.1021/acs.jafc.1c06227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Respiratory viruses are linked to major epidemic events that have plagued humans through recorded history and possibly much earlier, ranging from common colds, influenza, and coronavirus infections to measles. However, difficulty in developing effective pharmaceutical solutions to treat infected individuals has hindered efforts to manage and minimize respiratory viral outbreaks and the associated mortality. Here we highlight a series of botanical interventions with different and often overlapping putative mechanisms of action to support the respiratory system, for which the bioactive pharmacophore was suggested and the initial structure-activity relationships have been explored (Bupleurum spp., Glycyrrhiza spp., Andrographis spp.), have been proposed with uncertainty (Echinacea spp., Zingiber spp., Verbascum spp., Marrubium spp.), or remained to be elucidated (Sambucus spp., Urtica spp.). Investigating these metabolites and their botanical sources holds potential to uncover new mediators of the respiratory health outcomes as well as molecular targets for future break-through therapeutic interventions targeting respiratory viral outbreaks.
Collapse
Affiliation(s)
- Thirumurugan Rathinasabapathy
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, North Carolina 27695, United States
| | - Lakshmana Prabu Sakthivel
- Department of Pharmaceutical Technology, College of Engineering, Anna University BIT Campus, Tiruchirappalli, Tamil Nadu 620024, India
| | - Slavko Komarnytsky
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, North Carolina 27695, United States
| |
Collapse
|