1
|
Gracia-Rodriguez C, Martínez-Medina AE, Torres-Cosio L, Lopez-Ortiz C, Nimmakayala P, Luévanos-Escareño MP, Hernández-Almanza AY, Castro-Alonso MJ, Sosa-Martínez JD, Reddy UK, Balagurusamy N. Can the molecular and transgenic breeding of crops be an alternative and sustainable technology to meet food demand? Funct Integr Genomics 2025; 25:83. [PMID: 40205022 DOI: 10.1007/s10142-025-01594-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/11/2025]
Abstract
The gradual increase in the worldwide population represents various challenges, and one of the most alarming being the food demand. Historically technological advances led to the development of crops that meets the requirements and demands. Currently, molecular breeding unlocks the genetic potential of crops for their improvement, positioning it as a key technology for the development of new crops. The implementation of OMICs sciences, such spatial and single cell transcriptomics is providing a large and precise information, which can be exploited for crop improvement related to increasing yield, improving the nutritional value; designing new strategies for diseases resistance and management and for conserving biodiversity. Furthermore, the use of new technologies such CRISPR/CAS9 brought us the ability to modify the selected regions of the genome to select the superior's genotypes at a short time and the use of artificial intelligence aid in the analysis of big data generated by OMICS sciences. On the other hand, the application of molecular improvement technologies open up discussion on global regulatory measures, the socio-economic and socio-ethics, as the frameworks on its global regulation and its impact on the society create the public perception on its acceptance. In this review, the use and impact of OMICs sciences and genetic engineering in crops development, the regulatory measures, the socio-economic impact and as well as the mediatic information on genetically modified crops worldwide is discussed along with comprehensive insights on the potential of molecular plant breeding as an alternative and sustainable technology to meet global food demand.
Collapse
Affiliation(s)
- Celeste Gracia-Rodriguez
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Ciudad Universitaria de La Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km.7.5, 27276, Torreón, Coah., México. CP, Mexico
| | - Angela Elena Martínez-Medina
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Ciudad Universitaria de La Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km.7.5, 27276, Torreón, Coah., México. CP, Mexico
| | - Liliana Torres-Cosio
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Ciudad Universitaria de La Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km.7.5, 27276, Torreón, Coah., México. CP, Mexico
| | - Carlos Lopez-Ortiz
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV, 25112 - 1000, USA
| | - Padma Nimmakayala
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV, 25112 - 1000, USA
| | - Miriam Paulina Luévanos-Escareño
- Facultad de Ciencias Biológicas, Ciudad Universitaria de La Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km.7.5, 27276, Torreón, Coah., México. CP, Mexico
| | - Ayerim Yedid Hernández-Almanza
- Facultad de Ciencias Biológicas, Ciudad Universitaria de La Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km.7.5, 27276, Torreón, Coah., México. CP, Mexico
| | - María José Castro-Alonso
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Ciudad Universitaria de La Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km.7.5, 27276, Torreón, Coah., México. CP, Mexico
| | - Jazel Doménica Sosa-Martínez
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Ciudad Universitaria de La Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km.7.5, 27276, Torreón, Coah., México. CP, Mexico
| | - Umesh K Reddy
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV, 25112 - 1000, USA
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Ciudad Universitaria de La Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km.7.5, 27276, Torreón, Coah., México. CP, Mexico.
| |
Collapse
|
2
|
Baekelandt A, Saltenis VLR, Nacry P, Malyska A, Cornelissen M, Nanda AK, Nair A, Rogowsky P, Pauwels L, Muller B, Collén J, Blomme J, Pribil M, Scharff LB, Davies J, Wilhelm R, Rolland N, Harbinson J, Boerjan W, Murchie EH, Burgess AJ, Cohan J, Debaeke P, Thomine S, Inzé D, Lankhorst RK, Parry MAJ. Paving the way towards future‐proofing our crops. Food Energy Secur 2023. [DOI: 10.1002/fes3.441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Alexandra Baekelandt
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - Vandasue L. R. Saltenis
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Denmark
| | - Philippe Nacry
- BPMP, Univ. Montpellier, INRAE, CNRS, Institut Agro Montpellier France
| | | | | | - Amrit Kaur Nanda
- Plants for the Future' European Technology Platform Brussels Belgium
| | - Abhishek Nair
- Marketing and Consumer Behaviour Group Wageningen University Wageningen Gelderland Netherlands
| | - Peter Rogowsky
- INRAE, UMR Plant Reproduction and Development Lyon France
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - Bertrand Muller
- Université de Montpellier – LEPSE – INRAE – Institut Agro Montpellier France
| | - Jonas Collén
- CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff Sorbonne Université Roscoff France
| | - Jonas Blomme
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
- Phycology Research Group, Department of Biology Ghent University Ghent Belgium
| | - Mathias Pribil
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Denmark
| | - Lars B. Scharff
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Denmark
| | - Jessica Davies
- Lancaster Environment Centre Lancaster University Lancaster UK
| | - Ralf Wilhelm
- Institute for Biosafety in Plant Biotechnology Julius Kühn‐Institut – Federal Research Centre for Cultivated Plants Quedlinburg Germany
| | - Norbert Rolland
- Laboratoire de Physiologie Cellulaire et Végétale Univ. Grenoble Alpes, INRAE, CNRS, CEA Grenoble France
| | - Jeremy Harbinson
- Laboratory of Biophysics Wageningen University & Research Wageningen The Netherlands
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - Erik H. Murchie
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | - Alexandra J. Burgess
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | | | | | - Sébastien Thomine
- Institute for Integrative Biology of the Cell (I2BC) Université Paris‐Saclay, CEA, CNRS Gif‐sur‐Yvette France
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - René Klein Lankhorst
- Wageningen Plant Research Wageningen University & Research Wageningen The Netherlands
| | | |
Collapse
|
3
|
Burgess AJ, Masclaux‐Daubresse C, Strittmatter G, Weber APM, Taylor SH, Harbinson J, Yin X, Long S, Paul MJ, Westhoff P, Loreto F, Ceriotti A, Saltenis VLR, Pribil M, Nacry P, Scharff LB, Jensen PE, Muller B, Cohan J, Foulkes J, Rogowsky P, Debaeke P, Meyer C, Nelissen H, Inzé D, Klein Lankhorst R, Parry MAJ, Murchie EH, Baekelandt A. Improving crop yield potential: Underlying biological processes and future prospects. Food Energy Secur 2022; 12:e435. [PMID: 37035025 PMCID: PMC10078444 DOI: 10.1002/fes3.435] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022] Open
Abstract
The growing world population and global increases in the standard of living both result in an increasing demand for food, feed and other plant-derived products. In the coming years, plant-based research will be among the major drivers ensuring food security and the expansion of the bio-based economy. Crop productivity is determined by several factors, including the available physical and agricultural resources, crop management, and the resource use efficiency, quality and intrinsic yield potential of the chosen crop. This review focuses on intrinsic yield potential, since understanding its determinants and their biological basis will allow to maximize the plant's potential in food and energy production. Yield potential is determined by a variety of complex traits that integrate strictly regulated processes and their underlying gene regulatory networks. Due to this inherent complexity, numerous potential targets have been identified that could be exploited to increase crop yield. These encompass diverse metabolic and physical processes at the cellular, organ and canopy level. We present an overview of some of the distinct biological processes considered to be crucial for yield determination that could further be exploited to improve future crop productivity.
Collapse
Affiliation(s)
- Alexandra J. Burgess
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | | | - Günter Strittmatter
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | - Andreas P. M. Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | | | - Jeremy Harbinson
- Laboratory for Biophysics Wageningen University and Research Wageningen The Netherlands
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences Wageningen University & Research Wageningen The Netherlands
| | - Stephen Long
- Lancaster Environment Centre Lancaster University Lancaster UK
- Plant Biology and Crop Sciences University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | | | - Peter Westhoff
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, National Research Council of Italy (CNR), Rome, Italy and University of Naples Federico II Napoli Italy
| | - Aldo Ceriotti
- Institute of Agricultural Biology and Biotechnology National Research Council (CNR) Milan Italy
| | - Vandasue L. R. Saltenis
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Mathias Pribil
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Philippe Nacry
- BPMP, Univ Montpellier, INRAE, CNRS Institut Agro Montpellier France
| | - Lars B. Scharff
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Poul Erik Jensen
- Department of Food Science University of Copenhagen Copenhagen Denmark
| | - Bertrand Muller
- Université de Montpellier ‐ LEPSE – INRAE Institut Agro Montpellier France
| | | | - John Foulkes
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | - Peter Rogowsky
- INRAE UMR Plant Reproduction and Development Lyon France
| | | | - Christian Meyer
- IJPB UMR1318 INRAE‐AgroParisTech‐Université Paris Saclay Versailles France
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - René Klein Lankhorst
- Wageningen Plant Research Wageningen University & Research Wageningen The Netherlands
| | | | - Erik H. Murchie
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | - Alexandra Baekelandt
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| |
Collapse
|
4
|
Xu Y, Zhang X, Li H, Zheng H, Zhang J, Olsen MS, Varshney RK, Prasanna BM, Qian Q. Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction. MOLECULAR PLANT 2022; 15:1664-1695. [PMID: 36081348 DOI: 10.1016/j.molp.2022.09.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/20/2022] [Accepted: 09/02/2022] [Indexed: 05/12/2023]
Abstract
The first paradigm of plant breeding involves direct selection-based phenotypic observation, followed by predictive breeding using statistical models for quantitative traits constructed based on genetic experimental design and, more recently, by incorporation of molecular marker genotypes. However, plant performance or phenotype (P) is determined by the combined effects of genotype (G), envirotype (E), and genotype by environment interaction (GEI). Phenotypes can be predicted more precisely by training a model using data collected from multiple sources, including spatiotemporal omics (genomics, phenomics, and enviromics across time and space). Integration of 3D information profiles (G-P-E), each with multidimensionality, provides predictive breeding with both tremendous opportunities and great challenges. Here, we first review innovative technologies for predictive breeding. We then evaluate multidimensional information profiles that can be integrated with a predictive breeding strategy, particularly envirotypic data, which have largely been neglected in data collection and are nearly untouched in model construction. We propose a smart breeding scheme, integrated genomic-enviromic prediction (iGEP), as an extension of genomic prediction, using integrated multiomics information, big data technology, and artificial intelligence (mainly focused on machine and deep learning). We discuss how to implement iGEP, including spatiotemporal models, environmental indices, factorial and spatiotemporal structure of plant breeding data, and cross-species prediction. A strategy is then proposed for prediction-based crop redesign at both the macro (individual, population, and species) and micro (gene, metabolism, and network) scales. Finally, we provide perspectives on translating smart breeding into genetic gain through integrative breeding platforms and open-source breeding initiatives. We call for coordinated efforts in smart breeding through iGEP, institutional partnerships, and innovative technological support.
Collapse
Affiliation(s)
- Yunbi Xu
- Institute of Crop Sciences, CIMMYT-China, Chinese Academy of Agricultural Sciences, Beijing 100081, China; CIMMYT-China Tropical Maize Research Center, School of Food Science and Engineering, Foshan University, Foshan, Guangdong 528231, China; Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261325, China.
| | - Xingping Zhang
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261325, China
| | - Huihui Li
- Institute of Crop Sciences, CIMMYT-China, Chinese Academy of Agricultural Sciences, Beijing 100081, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
| | - Hongjian Zheng
- CIMMYT-China Specialty Maize Research Center, Shanghai Academy of Agricultural Sciences, Shanghai 201400, China
| | - Jianan Zhang
- MolBreeding Biotechnology Co., Ltd., Shijiazhuang, Hebei 050035, China
| | - Michael S Olsen
- CIMMYT (International Maize and Wheat Improvement Center), ICRAF Campus, United Nations Avenue, Nairobi, Kenya
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Australia
| | - Boddupalli M Prasanna
- CIMMYT (International Maize and Wheat Improvement Center), ICRAF Campus, United Nations Avenue, Nairobi, Kenya
| | - Qian Qian
- Institute of Crop Sciences, CIMMYT-China, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
5
|
Baekelandt A, Saltenis VLR, Pribil M, Nacry P, Harbinson J, Rolland N, Wilhelm R, Davies J, Inzé D, Parry MAJ, Klein Lankhorst R. CropBooster‐P
: Towards a roadmap for plant research to future‐proof crops in Europe. Food Energy Secur 2022. [DOI: 10.1002/fes3.428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Alexandra Baekelandt
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - Vandasue L. R. Saltenis
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Mathias Pribil
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Philippe Nacry
- BPMP, Univ Montpellier, INRAE, CNRS, Montpellier SupAgro Montpellier France
| | - Jeremy Harbinson
- Laboratory of Biophysics Wageningen University & Research Wageningen The Netherlands
| | - Norbert Rolland
- Laboratoire de Physiologie Cellulaire et Végétale Univ. Grenoble Alpes, INRAE, CNRS, CEA Grenoble France
| | - Ralf Wilhelm
- Institute for Biosafety in Plant Biotechnology Julius Kühn‐Institut ‐ Federal Research Centre for Cultivated Plants Quedlinburg Germany
| | - Jessica Davies
- Lancaster Environment Centre Lancaster University Lancaster UK
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | | | - René Klein Lankhorst
- Wageningen Plant Research Wageningen University & Research Wageningen The Netherlands
| |
Collapse
|
6
|
Crop Improvement: Where Are We Now? BIOLOGY 2022; 11:biology11101373. [PMID: 36290279 PMCID: PMC9598755 DOI: 10.3390/biology11101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
|
7
|
Zhao Y, Xiao D, Bai H, Liu DL, Tang J, Qi Y, Shen Y. Climate Change Impact on Yield and Water Use of Rice-Wheat Rotation System in the Huang-Huai-Hai Plain, China. BIOLOGY 2022; 11:1265. [PMID: 36138744 PMCID: PMC9495956 DOI: 10.3390/biology11091265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Global climate change has had a significant impact on crop production and agricultural water use. Investigating different future climate scenarios and their possible impacts on crop production and water consumption is critical for proposing effective responses to climate change. In this study, based on daily downscaled climate data from 22 Global Climate Models (GCMs) provided by Coupled Model Intercomparison Project Phase 6 (CMIP6), we applied the well-validated Agricultural Production Systems sIMulator (APSIM) to simulate crop phenology, yield, and water use of the rice-wheat rotation at four representative stations (including Hefei and Shouxian stations in Anhui province and Kunshan and Xuzhou stations in Jiangsu province) across the Huang-Huai-Hai Plain, China during the 2041-2070 period (2050s) under four Shared Socioeconomic Pathways (i.e., SSP126, SSP245, SSP370, and SSP585). The results showed a significant increase in annual mean temperature (Temp) and solar radiation (Rad), and annual total precipitation (Prec) at four investigated stations, except Rad under SSP370. Climate change mainly leads to a consistent advance in wheat phenology, but inconsistent trends in rice phenology across four stations. Moreover, the reproductive growth period (RGP) of wheat was prolonged while that of rice was shorted at three of four stations. Both rice and wheat yields were negatively correlated with Temp, but positively correlated with Rad, Prec, and CO2 concentration ([CO2]). However, crop ET was positively correlated with Rad, but negatively correlated with [CO2], as elevated [CO2] decreased stomatal conductance. Moreover, the water use efficiency (WUE) of rice and wheat was negatively correlated with Temp, but positively correlated with [CO2]. Overall, our study indicated that the change in Temp, Rad, Prec, and [CO2] have different impacts on different crops and at different stations. Therefore, in the impact assessment for climate change, it is necessary to explore and analyze different crops in different regions. Additionally, our study helps to improve understanding of the impacts of climate change on crop production and water consumption and provides data support for the sustainable development of agriculture.
Collapse
Affiliation(s)
- Yanxi Zhao
- Engineering Technology Research Center, Geographic Information Development and Application of Hebei, Institute of Geographical Science, Hebei Academy of Sciences, Shijiazhuang 050011, China
- College of Geography Science, Hebei Normal University, Shijiazhuang 050024, China
- Hebei Laboratory of Environmental Evolution and Ecological Construction, Shijiazhuang 050024, China
| | - Dengpan Xiao
- Engineering Technology Research Center, Geographic Information Development and Application of Hebei, Institute of Geographical Science, Hebei Academy of Sciences, Shijiazhuang 050011, China
- College of Geography Science, Hebei Normal University, Shijiazhuang 050024, China
- Hebei Laboratory of Environmental Evolution and Ecological Construction, Shijiazhuang 050024, China
| | - Huizi Bai
- Engineering Technology Research Center, Geographic Information Development and Application of Hebei, Institute of Geographical Science, Hebei Academy of Sciences, Shijiazhuang 050011, China
| | - De Li Liu
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW 2650, Australia
- Climate Change Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jianzhao Tang
- Engineering Technology Research Center, Geographic Information Development and Application of Hebei, Institute of Geographical Science, Hebei Academy of Sciences, Shijiazhuang 050011, China
| | - Yongqing Qi
- Key Laboratory for Agricultural Water Resources, Hebei Key Laboratory for Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Yanjun Shen
- Key Laboratory for Agricultural Water Resources, Hebei Key Laboratory for Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
- School of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|