1
|
Byambatseren E, Bykov T, Kasatov D, Kolesnikov I, Savinov S, Shein T, Taskaev S. Study of the influence of moderator material on sensitivity of the epithermal neutron flux detector using the 71Ga(n,γ) 72Ga reaction. Appl Radiat Isot 2025; 222:111844. [PMID: 40252268 DOI: 10.1016/j.apradiso.2025.111844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/07/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
An intense epithermal neutron flux is necessary for boron neutron capture therapy (BNCT), a promising technique for the treatment of malignant tumors. The epithermal neutron flux is an essential characteristic of the BNCT neutron beam, and its measurement is directly related to the reliability of the treatment planning system. Such a tool could be a cylindrical activation detector using 71Ga (n,γ)72Ga reaction. In the detector, the activation material is positioned in the geometrical center of a cylinder moderator covered with cadmium foil. Two different teams of researchers calculated the sensitivities of detectors of the same size, but with different moderators which differ by a factor of 1.6. In this work, the effect of the moderator material on the sensitivity of the detector was experimentally studied.
Collapse
Affiliation(s)
- E Byambatseren
- Budker Institute of Nuclear Physics, 11 Lavrentiev Avenue, 630090, Novosibirsk, Russia.
| | - T Bykov
- Budker Institute of Nuclear Physics, 11 Lavrentiev Avenue, 630090, Novosibirsk, Russia; Novosibirsk State University, 2 Pirogov str., 630090, Novosibirsk, Russia
| | - D Kasatov
- Budker Institute of Nuclear Physics, 11 Lavrentiev Avenue, 630090, Novosibirsk, Russia; Novosibirsk State University, 2 Pirogov str., 630090, Novosibirsk, Russia
| | - Ia Kolesnikov
- Budker Institute of Nuclear Physics, 11 Lavrentiev Avenue, 630090, Novosibirsk, Russia; Novosibirsk State University, 2 Pirogov str., 630090, Novosibirsk, Russia; State University "Dubna", 19 Universitetskaya str., Dubna, Moscow region, 141980, Russia
| | - S Savinov
- Budker Institute of Nuclear Physics, 11 Lavrentiev Avenue, 630090, Novosibirsk, Russia; Novosibirsk State University, 2 Pirogov str., 630090, Novosibirsk, Russia
| | - T Shein
- Budker Institute of Nuclear Physics, 11 Lavrentiev Avenue, 630090, Novosibirsk, Russia; Novosibirsk State University, 2 Pirogov str., 630090, Novosibirsk, Russia
| | - S Taskaev
- Budker Institute of Nuclear Physics, 11 Lavrentiev Avenue, 630090, Novosibirsk, Russia; Novosibirsk State University, 2 Pirogov str., 630090, Novosibirsk, Russia; State University "Dubna", 19 Universitetskaya str., Dubna, Moscow region, 141980, Russia.
| |
Collapse
|
2
|
Tran NH, Shtam T, Marchenko YY, Konevega AL, Lebedev D. Current State and Prospectives for Proton Boron Capture Therapy. Biomedicines 2023; 11:1727. [PMID: 37371822 DOI: 10.3390/biomedicines11061727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/19/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
The development of new methods increasing the biological effectiveness of proton therapy (PT) is of high interest in radiation oncology. The use of binary technologies, in which the damaging effect of proton radiation is further enhanced by the selective accumulation of the radiosensitizer in the target tissue, can significantly increase the effectiveness of radiation therapy. To increase the absorbed dose in a tumor target, proton boron capture therapy (PBCT) was proposed based on the reaction of proton capture on the 11B isotope with the formation of three α-particles. This review summarizes data on theoretical and experimental studies on the effectiveness and prospects of proton boron capture therapy.
Collapse
Affiliation(s)
- Nhan Hau Tran
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Politehnicheskaya 29, St. Petersburg 195251, Russia
| | - Tatiana Shtam
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia
- National Research Center "Kurchatov Institute", Akademika Kurchatova pl. 1, Moscow 123182, Russia
| | - Yaroslav Yu Marchenko
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia
| | - Andrey L Konevega
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Politehnicheskaya 29, St. Petersburg 195251, Russia
- National Research Center "Kurchatov Institute", Akademika Kurchatova pl. 1, Moscow 123182, Russia
| | - Dmitry Lebedev
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Orlova roscha 1, Gatchina 188300, Russia
- National Research Center "Kurchatov Institute", Akademika Kurchatova pl. 1, Moscow 123182, Russia
| |
Collapse
|
3
|
Shtam T, Burdakov V, Garina A, Garaeva L, Tran NH, Volnitskiy A, Kuus E, Amerkanov D, Pack F, Andreev G, Lubinskiy A, Shabalin K, Verlov N, Ivanov E, Ezhov V, Lebedev D, Konevega AL. Experimental validation of proton boron capture therapy for glioma cells. Sci Rep 2023; 13:1341. [PMID: 36693879 PMCID: PMC9873635 DOI: 10.1038/s41598-023-28428-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Proton boron capture therapy (PBCT) has emerged from particle acceleration research for enhancing the biological effectiveness of proton therapy. The mechanism responsible for the dose increase was supposed to be related to proton-boron fusion reactions (11B + p → 3α + 8.7 MeV). There has been some experimental evidence that the biological efficiency of protons is significantly higher for boron-11-containing prostate or breast cancer cells. The aim of this study was to evaluate the sensitizing potential of sodium borocaptate (BSH) under proton irradiation at the Bragg peak of cultured glioma cells. To address this problem, cells of two glioma lines were preincubated with 80 or 160 ppm boron-11, irradiated both at the middle of 200 MeV beam Spread-Out Bragg Peak (SOBP) and at the distal end of the 89.7 MeV beam SOBP and assessed for the viability, as well as their ability to form colonies. Our results clearly show that BSH provides for only a slight, if any, enhancement of the effect of proton radiation on the glioma cells in vitro. In addition, we repeated the experiments using the Du145 prostate cancer cell line, for which an increase in the biological efficiency of proton irradiation in the presence of sodium borocaptate was demonstrated previously. The data presented add new argument against the efficiency of proton boron capture therapy when based solely on direct dose-enhancement effect by the proton capture nuclear reaction, underlining the need to investigate the indirect effects of the secondary alpha irradiation depending on the state and treatment conditions of the irradiated tissue.
Collapse
Affiliation(s)
- Tatiana Shtam
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300. .,National Research Center "Kurchatov Institute", Akademika Kurchatova Pl. 1, Moscow, Russian Federation, 123182. .,Institute of Cytology of Russian Academy of Sciences, St. Petersburg, Russian Federation.
| | - Vladimir Burdakov
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300.,National Research Center "Kurchatov Institute", Akademika Kurchatova Pl. 1, Moscow, Russian Federation, 123182
| | - Alina Garina
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300.,National Research Center "Kurchatov Institute", Akademika Kurchatova Pl. 1, Moscow, Russian Federation, 123182.,Peter the Great St.Petersburg Polytechnic University, Politehnicheskaya 29, St. Petersburg, Russian Federation
| | - Luiza Garaeva
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300.,National Research Center "Kurchatov Institute", Akademika Kurchatova Pl. 1, Moscow, Russian Federation, 123182.,Peter the Great St.Petersburg Polytechnic University, Politehnicheskaya 29, St. Petersburg, Russian Federation
| | - Nhan Hau Tran
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300.,Peter the Great St.Petersburg Polytechnic University, Politehnicheskaya 29, St. Petersburg, Russian Federation
| | - Andrey Volnitskiy
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300.,National Research Center "Kurchatov Institute", Akademika Kurchatova Pl. 1, Moscow, Russian Federation, 123182
| | - Eva Kuus
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300.,Peter the Great St.Petersburg Polytechnic University, Politehnicheskaya 29, St. Petersburg, Russian Federation.,Proton Therapy Center MIBS, St. Petersburg, Russian Federation
| | - Dmitry Amerkanov
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300.,National Research Center "Kurchatov Institute", Akademika Kurchatova Pl. 1, Moscow, Russian Federation, 123182
| | - Fedor Pack
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300.,National Research Center "Kurchatov Institute", Akademika Kurchatova Pl. 1, Moscow, Russian Federation, 123182
| | - Georgy Andreev
- Proton Therapy Center MIBS, St. Petersburg, Russian Federation
| | | | - Konstantin Shabalin
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300.,National Research Center "Kurchatov Institute", Akademika Kurchatova Pl. 1, Moscow, Russian Federation, 123182
| | - Nicolay Verlov
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300.,National Research Center "Kurchatov Institute", Akademika Kurchatova Pl. 1, Moscow, Russian Federation, 123182
| | - Evgeniy Ivanov
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300
| | - Victor Ezhov
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300
| | - Dmitry Lebedev
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300.,National Research Center "Kurchatov Institute", Akademika Kurchatova Pl. 1, Moscow, Russian Federation, 123182
| | - Andrey L Konevega
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Centre "Kurchatov Institute", Leningradskaya Oblast, Mkr. Orlova Roshcha 1, Gatchina, Russian Federation, 188300. .,National Research Center "Kurchatov Institute", Akademika Kurchatova Pl. 1, Moscow, Russian Federation, 123182. .,Peter the Great St.Petersburg Polytechnic University, Politehnicheskaya 29, St. Petersburg, Russian Federation.
| |
Collapse
|
4
|
Bikchurina M, Bykov T, Byambatseren E, Ibrahem I, Kasatov D, Kolesnikov I, Konovalova V, Koshkarev A, Makarov A, Ostreinov G, Savinov S, Sokolova E, Sorokin I, Shchudlo I, Sycheva T, Verkhovod G, Taskaev S. VITA high flux neutron source for various applications. JOURNAL OF NEUTRON RESEARCH 2022. [DOI: 10.3233/jnr-220020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A high flux neutron source based on a vacuum-insulated tandem accelerator (VITA) and a lithium target has been proposed and developed at the Budker Institute of Nuclear Physics in Novosibirsk, Russia. We describe VITA which provides a dc proton/deuteron beam with an energy within a range of 0.6–2.3 MeV with a current from 1 nA to 10 mA. VITA is also capable of producing α-particles through the 7Li(p,α)α and 11B(p,α) α α reactions, 478 keV photons through the 7Li(p,p ′ γ)7Li reaction and positrons through the 19F(p,e+e−)16O reaction. We present several applications of this source: boron neutron capture therapy, nuclear cross sections determination, lithium target study, radiation blistering of metals during proton implantation and the radiation testing of promising materials.
Collapse
Affiliation(s)
- Marina Bikchurina
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Tymofey Bykov
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | | | - Dmitrii Kasatov
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Iaroslav Kolesnikov
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | - Alexey Koshkarev
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Aleksandr Makarov
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Georgii Ostreinov
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Sergey Savinov
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Evgeniia Sokolova
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Igor Sorokin
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Ivan Shchudlo
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Tatiana Sycheva
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Gleb Verkhovod
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Sergey Taskaev
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
5
|
Kanygin V, Kichigin A, Zaboronok A, Kasatova A, Petrova E, Tsygankova A, Zavjalov E, Mathis BJ, Taskaev S. In Vivo Accelerator-Based Boron Neutron Capture Therapy for Spontaneous Tumors in Large Animals: Case Series. BIOLOGY 2022; 11:138. [PMID: 35053138 PMCID: PMC8773183 DOI: 10.3390/biology11010138] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 11/29/2022]
Abstract
(1) Background: accelerator-based neutron sources are a new frontier for BNCT but many technical issues remain. We aimed to study such issues and results in larger-animal BNCT (cats and dogs) with naturally occurring, malignant tumors in different locations as an intermediate step in translating current research into clinical practice. (2) Methods: 10 pet cats and dogs with incurable, malignant tumors that had no treatment alternatives were included in this study. A tandem accelerator with vacuum insulation was used as a neutron source. As a boron-containing agent, 10B-enriched sodium borocaptate (BSH) was used at a dose of 100 mg/kg. Animal condition as well as tumor progression/regression were monitored. (3) Results: regression of tumors in response to treatment, improvements in the overall clinical picture, and an increase in the estimated duration and quality of life were observed. Treatment-related toxicity was mild and reversible. (4) Conclusions: our study contributes to preparations for human BNCT clinical trials and suggests utility for veterinary oncology.
Collapse
Affiliation(s)
- Vladimir Kanygin
- Laboratory of Medical and Biological Problems of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Str., 630090 Novosibirsk, Russia; (V.K.); (A.K.); (A.T.); (E.Z.)
| | - Aleksandr Kichigin
- Laboratory of Medical and Biological Problems of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Str., 630090 Novosibirsk, Russia; (V.K.); (A.K.); (A.T.); (E.Z.)
| | - Alexander Zaboronok
- Laboratory of Medical and Biological Problems of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Str., 630090 Novosibirsk, Russia; (V.K.); (A.K.); (A.T.); (E.Z.)
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Anna Kasatova
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11, Acad. Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.K.); (S.T.)
| | - Elena Petrova
- Veterinary Clinic “Best”, 57 Frunze Str., 630005 Novosibirsk, Russia;
| | - Alphiya Tsygankova
- Laboratory of Medical and Biological Problems of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Str., 630090 Novosibirsk, Russia; (V.K.); (A.K.); (A.T.); (E.Z.)
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3, Acad. Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Evgenii Zavjalov
- Laboratory of Medical and Biological Problems of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Str., 630090 Novosibirsk, Russia; (V.K.); (A.K.); (A.T.); (E.Z.)
- Center for Genetic Resources of Laboratory Animals, Institute of Cytology and Genetics SB RAS, 10, Acad. Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Bryan J. Mathis
- International Medical Center, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba 305-8576, Ibaraki, Japan;
| | - Sergey Taskaev
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11, Acad. Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.K.); (S.T.)
- Laboratory of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Str., 630090 Novosibirsk, Russia
| |
Collapse
|
6
|
Dose-Dependent Suppression of Human Glioblastoma Xenograft Growth by Accelerator-Based Boron Neutron Capture Therapy with Simultaneous Use of Two Boron-Containing Compounds. BIOLOGY 2021; 10:biology10111124. [PMID: 34827117 PMCID: PMC8615214 DOI: 10.3390/biology10111124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Accelerator-based boron neutron capture therapy (BNCT) has opened up new perspectives in increasing cancer treatment efficacy, including malignant brain tumors and particularly glioblastoma. We studied dosimetry control optimization, neutron beam parameter adjustment, and two boron compound combinations (along with single and double irradiation regimens) to assess safety and increase therapy efficacy, using a U87MG xenotransplant immunodeficient mouse model. In two sets of experiments, we achieved increases in tumor-growth inhibition (to 80–83%), a neutron capture therapy ratio of 2:1 (two times higher neutron capture therapy efficacy than neutron irradiation without boron), and increases in animal life expectancy, from 9 to 107 days, by treatment parameter adjustment. These results will contribute to the development of clinical-trial protocols for accelerator-based BNCT and further innovations in this cancer treatment method. Abstract (1) Background: Developments in accelerator-based neutron sources moved boron neutron capture therapy (BNCT) to the next phase, where new neutron radiation parameters had to be studied for the treatment of cancers, including brain tumors. We aimed to further improve accelerator-BNCT efficacy by optimizing dosimetry control, beam parameters, and combinations of boronophenylalanine (BPA) and sodium borocaptate (BSH) administration in U87MG xenograft-bearing immunodeficient mice with two different tumor locations. (2) Methods: The study included two sets of experiments. In Experiment #1, BPA only and single or double irradiation in higher doses were used, while, in Experiment #2, BPA and BSH combinations and single or double irradiation with dosage adjustment were analyzed. Mice without treatment or irradiation after BPA or BPA+BSH injection were used as controls. (3) Results: Irradiation parameter adjustment and BPA and BSH combination led to 80–83% tumor-growth inhibition index scores, irradiation:BNCT ratios of 1:2, and increases in animal life expectancy from 9 to 107 days. (4) Conclusions: Adjustments in dosimetry control, calculation of irradiation doses, and combined use of two 10B compounds allowed for BNCT optimization that will be useful in the development of clinical-trial protocols for accelerator-based BNCT.
Collapse
|