1
|
Ozhelvaci F, Steczkiewicz K. α/β Hydrolases: Toward Unraveling Entangled Classification. Proteins 2025; 93:855-870. [PMID: 39623291 PMCID: PMC11878206 DOI: 10.1002/prot.26776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 03/05/2025]
Abstract
α/β Hydrolase-like enzymes form a large and functionally diverse superfamily of proteins. Despite retaining a conserved structural core consisting of an eight-stranded, central β-sheet flanked with six α-helices, they display a modular architecture allowing them to perform a variety of functions, like esterases, lipases, peptidases, epoxidases, lyases, and others. At the same time, many α/β hydrolase-like families, even enzymatically distinct, share a high degree of sequence similarity. This imposes several problems for their annotation and classification, because available definitions of particular α/β hydrolase-like families overlap significantly, so the unambiguous functional assignment of these superfamily members remains a challenging task. For instance, two large and important peptidase families, namely S9 and S33, blend with lipases, epoxidases, esterases, and other enzymes unrelated to proteolysis, which hinders automatic annotations in high-throughput projects. With the use of thorough sequence and structure analyses, we newly annotate three protein families as α/β hydrolase-like and revise current classifications of the realm of α/β hydrolase-like superfamily. Based on manually curated structural superimpositions and multiple sequence and structure alignments, we comprehensively demonstrate structural conservation and diversity across the whole superfamily. Eventually, after detailed pairwise sequence similarity assessments, we develop a new clustering of the α/β hydrolases and provide a set of family profiles allowing for detailed, reliable, and automatic functional annotations of the superfamily members.
Collapse
Affiliation(s)
- Fatih Ozhelvaci
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarszawaPoland
| | - Kamil Steczkiewicz
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarszawaPoland
| |
Collapse
|
2
|
Hulme J. COVID-19 and Diarylamidines: The Parasitic Connection. Int J Mol Sci 2023; 24:6583. [PMID: 37047556 PMCID: PMC10094973 DOI: 10.3390/ijms24076583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
As emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants (Omicron) continue to outpace and negate combinatorial vaccines and monoclonal antibody therapies targeting the spike protein (S) receptor binding domain (RBD), the appetite for developing similar COVID-19 treatments has significantly diminished, with the attention of the scientific community switching to long COVID treatments. However, treatments that reduce the risk of "post-COVID-19 syndrome" and associated sequelae remain in their infancy, particularly as no established criteria for diagnosis currently exist. Thus, alternative therapies that reduce infection and prevent the broad range of symptoms associated with 'post-COVID-19 syndrome' require investigation. This review begins with an overview of the parasitic-diarylamidine connection, followed by the renin-angiotensin system (RAS) and associated angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSSR2) involved in SARS-CoV-2 infection. Subsequently, the ability of diarylamidines to inhibit S-protein binding and various membrane serine proteases associated with SARS-CoV-2 and parasitic infections are discussed. Finally, the roles of diarylamidines (primarily DIZE) in vaccine efficacy, epigenetics, and the potential amelioration of long COVID sequelae are highlighted.
Collapse
Affiliation(s)
- John Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Sujung-gu, Seongnam-si 461-701, Republic of Korea
| |
Collapse
|
3
|
Liu G, Ekmen E, Jalalypour F, Mertens HDT, Jeffries CM, Svergun D, Atilgan AR, Atilgan C, Sayers Z. Conformational multiplicity of bacterial ferric binding protein revealed by small angle x-ray scattering and molecular dynamics calculations. J Chem Phys 2023; 158:085101. [PMID: 36859088 DOI: 10.1063/5.0136558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This study combines molecular dynamics (MD) simulations with small angle x-ray scattering (SAXS) measurements to investigate the range of conformations that can be adopted by a pH/ionic strength (IS) sensitive protein and to quantify its distinct populations in solution. To explore how the conformational distribution of proteins may be modified in the environmental niches of biological media, we focus on the periplasmic ferric binding protein A (FbpA) from Haemophilus influenzae involved in the mechanism by which bacteria capture iron from higher organisms. We examine iron-binding/release mechanisms of FbpA in varying conditions simulating its biological environment. While we show that these changes fall within the detectable range for SAXS as evidenced by differences observed in the theoretical scattering patterns calculated from the crystal structure models of apo and holo forms, detection of conformational changes due to the point mutation D52A and changes in ionic strength (IS) from SAXS scattering profiles have been challenging. Here, to reach conclusions, statistical analyses with SAXS profiles and results from different techniques were combined in a complementary fashion. The SAXS data complemented by size exclusion chromatography point to multiple and/or alternative conformations at physiological IS, whereas they are well-explained by single crystallographic structures in low IS buffers. By fitting the SAXS data with unique conformations sampled by a series of MD simulations under conditions mimicking the buffers, we quantify the populations of the occupied substates. We also find that the D52A mutant that we predicted by coarse-grained computational modeling to allosterically control the iron binding site in FbpA, responds to the environmental changes in our experiments with conformational selection scenarios that differ from those of the wild type.
Collapse
Affiliation(s)
- Goksin Liu
- Sabanci University, Faculty of Engineering and Natural Sciences, Orhanli, Tuzla, 34956 Istanbul, Türkiye
| | - Erhan Ekmen
- Sabanci University, Faculty of Engineering and Natural Sciences, Orhanli, Tuzla, 34956 Istanbul, Türkiye
| | - Farzaneh Jalalypour
- Sabanci University, Faculty of Engineering and Natural Sciences, Orhanli, Tuzla, 34956 Istanbul, Türkiye
| | - Haydyn D T Mertens
- European Molecular Biology Laboratory - Hamburg Unit, Notkestrasse 85, 22603 Hamburg, Germany
| | - Cy M Jeffries
- European Molecular Biology Laboratory - Hamburg Unit, Notkestrasse 85, 22603 Hamburg, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory - Hamburg Unit, Notkestrasse 85, 22603 Hamburg, Germany
| | - Ali Rana Atilgan
- Sabanci University, Faculty of Engineering and Natural Sciences, Orhanli, Tuzla, 34956 Istanbul, Türkiye
| | - Canan Atilgan
- Sabanci University, Faculty of Engineering and Natural Sciences, Orhanli, Tuzla, 34956 Istanbul, Türkiye
| | - Zehra Sayers
- Sabanci University, Faculty of Engineering and Natural Sciences, Orhanli, Tuzla, 34956 Istanbul, Türkiye
| |
Collapse
|
4
|
Petrenko DE, Karlinsky DM, Gordeeva VD, Arapidi GP, Britikova EV, Britikov VV, Nikolaeva AY, Boyko KM, Timofeev VI, Kuranova IP, Mikhailova AG, Bocharov EV, Rakitina TV. Crystal Structure of Inhibitor-Bound Bacterial Oligopeptidase B in the Closed State: Similarity and Difference between Protozoan and Bacterial Enzymes. Int J Mol Sci 2023; 24:ijms24032286. [PMID: 36768612 PMCID: PMC9917282 DOI: 10.3390/ijms24032286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/20/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The crystal structure of bacterial oligopeptidase B from Serratia proteamaculans (SpOpB) in complex with a chloromethyl ketone inhibitor was determined at 2.2 Å resolution. SpOpB was crystallized in a closed (catalytically active) conformation. A single inhibitor molecule bound simultaneously to the catalytic residues S532 and H652 mimicked a tetrahedral intermediate of the catalytic reaction. A comparative analysis of the obtained structure and the structure of OpB from Trypanosoma brucei (TbOpB) in a closed conformation showed that in both enzymes, the stabilization of the D-loop (carrying the catalytic D) in a position favorable for the formation of a tetrahedral complex occurs due to interaction with the neighboring loop from the β-propeller. However, the modes of interdomain interactions were significantly different for bacterial and protozoan OpBs. Instead of a salt bridge (as in TbOpB), in SpOpB, a pair of polar residues following the catalytic D617 and a pair of neighboring arginine residues from the β-propeller domain formed complementary oppositely charged surfaces. Bioinformatics analysis and structural modeling show that all bacterial OpBs can be divided into two large groups according to these two modes of D-loop stabilization in closed conformations.
Collapse
Affiliation(s)
| | - David M. Karlinsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Veronika D. Gordeeva
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Georgij P. Arapidi
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Moscow Institute of Physics and Technology (National Research University), Phystech School of Biological and Medical Physics, 117303 Moscow, Russia
| | - Elena V. Britikova
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, 220141 Minsk, Belarus
| | - Vladimir V. Britikov
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, 220141 Minsk, Belarus
| | | | - Konstantin M. Boyko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Vladimir I. Timofeev
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences, 119333 Moscow, Russia
| | - Inna P. Kuranova
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences, 119333 Moscow, Russia
| | - Anna G. Mikhailova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Eduard V. Bocharov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
- Moscow Institute of Physics and Technology (National Research University), Phystech School of Biological and Medical Physics, 117303 Moscow, Russia
| | - Tatiana V. Rakitina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
- Correspondence:
| |
Collapse
|
5
|
Petrenko DE, Timofeev VI, Karlinsky DM, Plashchinskaia DD, Mikhailova AG, Rakitina TV. Study of the Binding Free Energy of Peptide Substrates in the Active Site of Oligopeptidase B from Serratia proteamaculans by the MM-GBSA Method. CRYSTALLOGR REP+ 2022. [DOI: 10.1134/s1063774522030154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Elucidation of the Conformational Transition of Oligopeptidase B by an Integrative Approach Based on the Combination of X-ray, SAXS, and Essential Dynamics Sampling Simulation. CRYSTALS 2022. [DOI: 10.3390/cryst12050712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Oligopeptidase B (OPB) is the least studied group from the prolyl oligopeptidase family. OPBs are found in bacteria and parasitic protozoa and represent pathogenesis factors of the corresponding infections. OPBs consist of two domains connected by a hinge region and have the characteristics of conformational dynamics, which include two types of movements: the bridging/separation of α/β-hydrolase catalytic and β-propeller-regulatory domains and the movement of a loop carrying catalytic histidine, which regulates an assembly/disassembly of the catalytic triad. In this work, an elucidation of the interdomain dynamics of OPB from Serratia proteamaculans (SpOPB) with and without modification of the hinge region was performed using a combination of X-ray diffraction analysis and small-angle X-ray scattering, which was complemented with an essential dynamics sampling (EDS) simulation. The first crystal structure of catalytically deficient SpOPB (SpOPBS532A) with an intact hinge sequence is reported. Similarly to SpOPB with modified hinges, SpOPBS532A was crystallized in the presence of spermine and adopted an intermediate conformation in the crystal lattice. Despite the similarity of the crystal structures, a difference in the catalytic triad residue arrangement was detected, which explained the inhibitory effect of the hinge modification. The SpOPBS532A structure reconstituted to the wild-type form was used as a starting point to the classical MD followed by EDS simulation, which allowed us to simulate the domain separation and the transition of the enzyme from the intermediate to open conformation. The obtained open state model was in good agreement with the experimental SAXS data.
Collapse
|
7
|
The Crystal Structure of Nα-p-tosyl-lysyl Chloromethylketone-Bound Oligopeptidase B from Serratia Proteamaculans Revealed a New Type of Inhibitor Binding. CRYSTALS 2021. [DOI: 10.3390/cryst11111438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A covalent serine protease inhibitor—Na-p-Tosyl-Lysyl Chloromethylketone (TCK) is a modified lysine residue tosylated at the N-terminus and chloromethylated at the C-terminus, one molecule of which is capable of forming two covalent bonds with both Ser and His catalytic residues, was co-crystallized with modified oligopeptidase B (OpB) from Serratia proteomaculans (PSPmod). The kinetics study, which preceded crystallization, shows that the stoichiometry of TCK-dependent inhibition of PSPmod was 1:2 (protein:inhibitor). The crystal structure of the PSPmod-TCK complex, solved at a resolution of 2.3 Å, confirmed a new type of inhibitor binding. Two TCK molecules were bound to one enzyme molecule: one with the catalytic Ser, the other with the catalytic His. Due to this mode of binding, the intermediate state of PSPmod and the disturbed conformation of the catalytic triad were preserved in the PSPmod-TCK complex. Nevertheless, the analysis of the amino acid surroundings of the inhibitor molecule bound to the catalytic Ser and its comparison with that of antipain-bound OpB from Trypanosoma brucei provided an insight in the structure of the PSPmod substrate-binding pocket. Supposedly, the new type of binding is typical for the interaction of chloromethylketone derivatives with two-domain OpBs. In the open conformational state that these enzymes are assumed in solution, the disordered configuration of the catalytic triad prevents simultaneous interaction of one inhibitor molecule with two catalytic residues.
Collapse
|