1
|
Bharanidharan R, Xaysana P, Hong WH, Kim T, Byun JS, Lee Y, Tomple BM, Kim KH, Ibidhi R. Methane emission, nitrogen excretion, and energy partitioning in Hanwoo steers fed a typical TMR diet supplemented with Pharbitis nil seeds. Front Vet Sci 2024; 11:1467077. [PMID: 39380775 PMCID: PMC11459670 DOI: 10.3389/fvets.2024.1467077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 10/10/2024] Open
Abstract
Two in vivo experiments were conducted to evaluate the potential of Pharbitis nil seeds (PA) as an anti-methanogenic additive to ruminant feed. In experiment 1, six Hanwoo steers (459.0 ± 25.8 kg) were fed either a total mixed ration (TMR; 32-d period) or TMR supplemented with PA at 5% dry matter (DM) intake (TMR-PA; 45-d period) for two consecutive periods. Fecal and urine outputs were measured in an apparent digestibility trial in both periods. Methane (CH4) yield and heat energy (HE) were measured using respiratory chambers equipped with gas analyzers. In experiment 2, five rumen cannulated Holstein steers (744 ± 35 kg) were fed the same TMR or TMR-PA diets for 40 days; rumen samples were collected at 0, 1.5, and 3 h after feeding on the last day of the feeding period. In experiment 1, although there were no differences (p > 0.05) in nutrients or gross energy intake (GEI) between the groups, an increase (p < 0.05) in the apparent digestibility of DM (9.1%) and neutral detergent fiber (22.9%) was observed in the TMR-PA fed Hanwoo steers. Pronounced decreases (p < 0.05) in CH4 (g/Kg DM; 17.1%) and urinary N excretion (% N intake; 7.6%) were observed in the TMR-PA group, leading to a 14.7% increase in metabolizable energy intake (% GEI). However, only a numerical increase (p > 0.05) in retained energy was observed due to the increase in HE loss. In experiment 2, a drastic decrease (p < 0.05) in rumen ammonia concentration (56.3%) associated with an increased (p = 0.091) rumen short-chain fatty acid concentration 1.5 h after feeding were observed in TMR-PA fed Holstein steers. A 26.6% increase (p < 0.05) in the propionate proportion during the treatment period clearly reflected a shift in the ruminal H2 sink after 3 h of feeding. A 40% reduction (p = 0.067) in the relative abundance of rumen protozoa Entodinium caudatum was also observed. It was concluded that PA could be a natural feed additive for CH4 and N emission abatement.
Collapse
Affiliation(s)
- Rajaraman Bharanidharan
- Department of Eco-friendly Livestock Science, Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Panyavong Xaysana
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Woo Hyeong Hong
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Taehoon Kim
- Department of Geography, McGill University, Montreal, QC, Canada
| | - Jun Suk Byun
- University of Maryland Center for Environmental Science, Frostburg, MD, United States
| | - Yookyung Lee
- National Institute of Animal Sciences, Rural Development Administration, Cheonan, Republic of Korea
| | - Byamungu Mayange Tomple
- National Institute of Animal Sciences, Rural Development Administration, Hamyang, Republic of Korea
| | - Kyoung Hoon Kim
- Department of Eco-friendly Livestock Science, Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Ridha Ibidhi
- Agroécologie, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
2
|
Yu Z, Yan M, Somasundaram S. Rumen protozoa and viruses: The predators within and their functions-A mini-review. JDS COMMUNICATIONS 2024; 5:236-240. [PMID: 38646576 PMCID: PMC11026968 DOI: 10.3168/jdsc.2023-0433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/07/2023] [Indexed: 04/23/2024]
Abstract
The rumen microbiome digests plant feedstuff that would be otherwise indigestible and provides most of the metabolizable energy and protein the host animals need. Until recently, research efforts have primarily been directed to bacteria and archaea, leaving the protozoa, fungi, and viruses much less understood. Protozoa contribute to feed digestion and fermentation, but as predators, they affect the microbiome and its function by regulating the abundance and activities of other rumen microbes both in a top-down (by directly killing the prey) and bottom-up (by affecting the metabolism of other microbes) manner. Rumen viruses (or phages, used interchangeably below) are diverse and abundant but the least understood. They are also predators (intracellular "predators") because of their lytic lifecycle, although they can co-exist peacefully with their hosts and reprogram host metabolism, buttressing host ecological fitness. In doing so, rumen viruses also affect the rumen microbiome in both a top-down and a bottom-up manner. Here we review the recent advancement in understanding both types of predators, focusing on their potential impact on the rumen microbiome and functions.
Collapse
Affiliation(s)
- Zhongtang Yu
- Department of Animal Sciences, Center of Microbiome Science, The Ohio State University, Columbus, OH 43210
| | - Ming Yan
- Department of Animal Sciences, Center of Microbiome Science, The Ohio State University, Columbus, OH 43210
| | - Sripoorna Somasundaram
- Department of Animal Sciences, Center of Microbiome Science, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
3
|
Li K, Xia T, Jiang Y, Wang N, Lai L, Xu S, Yue X, Xin H. A review on ethnopharmacology, phytochemistry, pharmacology and potential uses of Portulaca oleracea L. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117211. [PMID: 37739100 DOI: 10.1016/j.jep.2023.117211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Portulaca oleracea L. (PO), popularly known as purslane, has been documented in ethnopharmacology in various countries and regions. Traditional application records indicated that PO might be used extensively to treat the common cold, dysentery, urinary tract infections, coughing, eye infections, skin problems, gynecological diseases, and pediatric illnesses. AIM OF THE REVIEW This paper includes a systematic review of the traditional usage, phytochemicals, pharmacological activity, and potential uses of PO to provide an overview of the research for further exploitation of PO resources. MATERIALS AND METHODS This article uses "Portulaca oleracea L." and "purslane" as the keywords and collects relevant information on PO from different databases, including PubMed, Web of Science, Springer, Science Direct, ACS, Wiley, CNKI, Baidu Scholar, Google Scholar, and ancient meteria medica. RESULTS PO is a member of the Portulacaceae family and is grown worldwide. Traditional Chinese medicine believes that purslane has the effect of improving eyesight, eliminating evil qi, quenching thirst, purgation, diuresis, hemostasis, regulating qi, promoting hair growth, detoxifying, and avoiding epidemic qi. Recent phytochemical investigations have shown that PO is a rich source of flavonoids, homoisoflavonoids, alkaloids, organic acids, esters, lignans, terpenoids, catecholamines, sterols, and cerebrosides. The purslane extracts or compounds have exhibited numerous biological activities such as anti-inflammatory, immunomodulatory, antimicrobial, antiviral, antioxidant, anticancer, renoprotective, hepatoprotective, gastroprotective, metabolic, muscle relaxant, anti-asthmatic and anti-osteoporosis properties. The significant omega-3 fatty acids, vital amino acids, minerals, and vitamins found in purslane also provide nutritional benefits. Purslane as a food/feed additive in the food industry and animal husbandry has caused concern. Its global wide distribution and tolerance to abiotic stress characteristics make it in the future sustainable development of agriculture a certain position. CONCLUSIONS Based on traditional usage, phytochemicals, and pharmacological activity, PO is a potential medicinal and edible plant with diverse pharmacological effects. Due to purslane's various advantages, it may have vast application potential in the food and pharmaceutical industries and animal husbandry.
Collapse
Affiliation(s)
- Kun Li
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China; Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Tianshuang Xia
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yiping Jiang
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Liyong Lai
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Shengyan Xu
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Xiaoqiang Yue
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Hailiang Xin
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China.
| |
Collapse
|
4
|
Sheoran S, Dey A, Sindhu S. Reduction of methane and nitrogen emission and improvement of feed efficiency, rumen fermentation, and milk production through strategic supplementation of eucalyptus (Eucalyptus citriodora) leaf meal in the diet of lactating buffalo (Bubalus bubalis). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125510-125525. [PMID: 37999845 DOI: 10.1007/s11356-023-31089-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Buffalo plays a compelling role in reducing malnutrition and ensuring food to the people of Asian countries by its major contribution to milk and meat pool of the livestock agriculture farming system in the region. As Asia is the home for more than 90% of world buffalo population, they are also one of the largest emitters of greenhouse gasses. Eucalyptus (Eucalyptus sp.) leaves are rich sources of naturally occurring essential oils and phenolic compounds, which could modulate rumen fermentation through mitigation of methanogenesis and nitrogen excretion along with stimulation of immune system and production performances of animals. Therefore, the present study investigated the impact of dietary inclusion of eucalyptus (Eucalyptus citriodora) leaf meal (ELM) on voluntary feed intake, rumen functions, methane emission, nutrient utilization, milk yield and fatty acids profile, and immune response in lactating buffalo (Bubalus bubalis). An in vitro experiment conducted with graded dose (10-40 g/kg) inclusion of ELM into the total mixed ration to select ideal level for feeding to lactating buffaloes, an improvement (P < 0.05) in feed degradability (IVDMD), microbial biomass and ruminal volatile fatty acids concentration with reduced (P < 0.05) methane and ammonia-N production were evidenced when ELM was added at 10-20 g/kg DM, beyond which negative effects on rumen fermentation were pronounced. An in vivo experimentation was conducted with sixteen Murrah (Bubalus bubalis) buffaloes of mean live weight, 544.23 ± 10.02 kg; parity, 2-4 at initial stage (~60 days) of lactation with average milk yield of 11.43 ± 1.32 kg and were divided into two groups (CON, ELM) of eight each in a completely randomized design. All the animals were kept individually on wheat straw-based diet with required quantity of concentrate mixture and green fodder. The control group buffaloes were fed a total mixed ration; however, the treatment group (ELM) was supplemented with 10 g/kg DM diet of dry grounded eucalyptus (Eucalyptus citriodora) leaves by mixing with the concentrate mixture. The feeding experiment was conducted for 120 days, including 15 days for adaptation to the experimental diets and 105 days for data recording. The nutrient digestibility (DM, OM, CP, and EE) was improved (P < 0.05) without affecting feed intake (P > 0.05) and fiber digestibility (NDF and ADF) in ELM supplemented buffaloes. Increased (P < 0.05) milk production and rumenic acid concentration (cis 9 trans 11 C18:2 CLA) were demonstrated with comparable (P > 0.05) milk composition and major fatty acids profile of milk in the supplemented buffaloes. Dietary inclusion of ELM reduced (P < 0.05) enteric methane production and fecal excretion of nitrogen. The health status of buffaloes fed ELM improved throughout the experimental period was improved by enhancing cell mediated (P = 0.09) and humoral (P < 0.01) immune responses without affecting (P > 0.05) major blood metabolites. The study described feeding ELM at 10 g/kg diet to lactating Murrah buffaloes as a natural source of phenols and essential oils to increase milk production and CLA content, reduce methane and nitrogen emissions, and improve health status. Thus, feeding of ELM could be beneficial for climate smart buffalo production system for enhancing milk production with lesser impact on environment.
Collapse
Affiliation(s)
- Sandeep Sheoran
- Division of Animal Nutrition and Feed Technology, ICAR-Central Institute for Research on Buffaloes, Sirsa Road, Hisar, Haryana, 125001, India
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Avijit Dey
- Division of Animal Nutrition and Feed Technology, ICAR-Central Institute for Research on Buffaloes, Sirsa Road, Hisar, Haryana, 125001, India.
| | - Sonia Sindhu
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| |
Collapse
|
5
|
Bou Malhab LJ, Bajbouj K, Shehab NG, Elayoty SM, Sinoj J, Adra S, Taneera J, Saleh MA, Abdel-Rahman WM, Semreen MH, Alzoubi KH, Bustanji Y, El-Huneidi W, Abu-Gharbieh E. Potential anticancer properties of calotropis procera: An investigation on breast and colon cancer cells. Heliyon 2023; 9:e16706. [PMID: 37332907 PMCID: PMC10272338 DOI: 10.1016/j.heliyon.2023.e16706] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/20/2023] Open
Abstract
Calotropis procera is a perennial flowering plant of the Apocynaceae family, traditionally used in medicine to treat various ailments. Recent investigations have revealed its potential therapeutic activities such as anti-inflammatory, gastroprotective, analgesic, anti-obesity, and anti-diabetic properties. RP-HPLC qualitatively and quantitatively evaluated the phenolic acids and flavonoids in the ethanolic extract at two different wavelengths, 280 and 330 nm. In addition, total phenolic and flavonoid contents were measured via spectrophotometric determination in addition to the antioxidant activity. The antiproliferative effects of C. procera were investigated on two cancer cell lines: human colon (HCT-116) and breast (MCF-7) cancer. Several methods were utilised to analyse the effectiveness of the plant extract on the cytotoxicity, apoptosis, cell cycle progression, genes involved in the cell cycle, and protein expression profiles of HCT-116 and MCF-7 cells. These included the MTT assay, Annexin V-FITC/PI, analysis of the cell cycle, and Western blot. Results indicated that ferulic and caffeic acids were the major compounds at λmax 280 nm (1.374% and 0.561%, respectively), while the major compounds at λmax 325 nm were kaempferol and luteolin (1.036% and 0.512%, respectively). The ethanolic extract had significantly higher antioxidant activity (80 ± 2.3%) compared to ascorbic acid (90 ± 3.1%). C. procera extract exhibited dose-dependent cell growth inhibition, with an estimated IC50 of 50 μg/mL for MCF-7 and 55 μg/mL for HCT-116 cells at 24 h. Annexin V-FITC/PI confirmed the induction of apoptosis. Remarkably, cell cycle arrest occurred at the sub-G1 phase in MCF-7 cells, while in HCT-116 cells, it was observed at the G2-M phase. The sub-G1 arrest was associated with dysregulation of Akt, p-AKT, mTOR, and p-mTOR proteins, as confirmed by the Western blot analysis, while downregulation of CDK1, cyclin B1, and survivin caused G2-M arrest.
Collapse
Affiliation(s)
- Lara J. Bou Malhab
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Khuloud Bajbouj
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Naglaa G. Shehab
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College, Dubai, 19099, United Arab Emirates
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza; 12613, Egypt
| | - Salma M. Elayoty
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College, Dubai, 19099, United Arab Emirates
| | - Jithna Sinoj
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Saryia Adra
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah; 27272, United Arab Emirates
| | - Jalal Taneera
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mohamed A. Saleh
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah; 27272, United Arab Emirates
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Wael M. Abdel-Rahman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mohammad H. Semreen
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Karem H. Alzoubi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- Departement of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Yasser Bustanji
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | - Waseem El-Huneidi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Eman Abu-Gharbieh
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah; 27272, United Arab Emirates
| |
Collapse
|
6
|
Correlation of Ruminal Fermentation Parameters and Rumen Bacterial Community by Comparing Those of the Goat, Sheep, and Cow In Vitro. FERMENTATION 2022. [DOI: 10.3390/fermentation8090427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, we aimed to establish the correlation between ruminal fermentation parameters and the bacterial community by comparing those of the goat, sheep, and cow, thus illustrating the main bacteria causing the difference in rumen fermentation among goats, sheep, and cows and providing a new idea for improving the feed digestibility of ruminants. Rumen fluid from goats (Taihang White cashmere goat, n = 6), sheep (Hu sheep, n = 6), and cows (Holstein cow, n = 6) was collected using oral intubation and immediately brought back to the laboratory for a fermentation test with the same total mixed ration (TMR) feed in vitro. The rumen bacterial composition was measured by high-throughput sequencing of 16S rRNA genes in the MiSeq platform, the gas production (GP) was recorded after 2, 4, 6, 8, 10, 12, 24, 36, and 48 h of fermentation, and the feed nutrient digestibility and the rumen fluid parameters were determined after 48 h of fermentation. The results showed that the 48 h GP of the sheep group was higher than that of the cow group (p < 0.05), and the theoretical maximum GP was higher than that of the goat and cow groups (p < 0.05). The organic matter digestibility (OMD), dry matter digestibility (DMD), crude protein digestibility (CPD), and gross energy digestibility (GED) of the sheep group were higher than those of the goat and cow groups (p < 0.05). The ammonia nitrogen (NH3-N), microbial protein (MCP), and total volatile fatty acids (TVFA) concentrations of the sheep group were higher than those of the other groups (p < 0.05), and the pH of the sheep group was lower than those of the other groups (p < 0.05). The 16S rRNA gene sequencing revealed that bacterial composition also differed in the rumens of the sheep, goat, and cow groups (ANOSIM, p < 0.05). We then used a random forest machine learning algorithm to establish models to predict the fermentation parameters by rumen bacterial composition, and the results showed that rumen bacterial composition could explain most of the ruminal fermentation parameter variation (66.56%, 56.13%, 65.75%, 80.85%, 61.30%, 4.59%, 1.41%, −3.13%, 34.76%, −25.62%, 2.73%, 60.74%, 76.23%, 47.48%, −13.2%, 80.16%, 4.15%, 69.03%, 32.29%, and 89.96% for 48 h GP, a (GP of quickly degraded part), b (GP of slowly degraded part), c (GP rate), a + b (theoretical maximum GP), DMD, OMD, GED, CPD, NDFD, ANDF, pH, NH3-N, MCP, acetic acid, propionic acid, butyric acid, valeric acid, TVFA, and A:P (acetic acid–propionic acid ratio), respectively). A correlation analysis revealed that Lactobacillus, Prevotellaceae_UCG-003, Selenomonas, Peptostreptococcus, and Olsenella significantly correlated with most in vitro fermentation parameters (p < 0.05). A comprehensive analysis showed that rumen fermentation parameters and bacterial composition differed in goats, sheep, and cows. The ruminal fermentation parameters of GP, a, b, c, a + b, pH, NH3-N, propionic acid, valeric acid, and A:P could be accurately predicted by rumen bacteria (explanation > 55% of variation), and the Lactobacillus, Prevotellaceae_UCG-003, Olsenella, Selenomonas, and Peptostreptococcus were the main bacteria that affected the in vitro fermentation parameters of goats, sheep, and cows.
Collapse
|
7
|
Al Talebi ZA, Al-Kawaz HS, Mahdi RK, Al-Hassnawi AT, Alta'ee AH, Hadwan AM, Khudhair DA, Hadwan MH. An optimized protocol for estimating cellulase activity in biological samples. Anal Biochem 2022; 655:114860. [PMID: 35985481 DOI: 10.1016/j.ab.2022.114860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/01/2022]
Abstract
Cellulase is a microbial enzyme responsible for degrading the β-1,4 glycoside bond in polysaccharide cellulose, which is abundant in various animal foodstuffs. Cellulase is an important industrial enzyme used for various purposes, including biopolishing textile fibers, softening garments, biostoning denim fabric, and removing excess color from textiles. In the food industry, cellulase is combined with pectinase and hemicellulase. Therefore, the need for a reliable, fast, and inexpensive cellulase activity protocol that could be used with diverse biological and environmental samples is great. This study developed a novel method to quantify cellulase activity using picric acid (PCA), which reacts with generated glucose molecules to produce mahogany red picramic acid. This PCA-cellulase method uses sodium hydroxide instead of sodium carbonate to provide alkalinity in the reaction solution, increasing the stability of picramic acid and the sensitivity and linearity of the reaction. It also overcomes the limitations of previous methods. It is notable for its dependence on few chemicals with low concentrations compared to previous methods that depend on many chemicals with high concentrations. The PCA-cellulase method was optimized using the Box-Behnken design, and its accuracy was determined using a response surface approach. A Bland-Altman cellulase activity graph was used to validate the PCA-cellulase method with a correlation coefficient of 0.9991. Therefore, the novel PCA-cellulase method provides accurate results that are comparable to existing methods.
Collapse
Affiliation(s)
- Zainab Abbas Al Talebi
- Chemistry Dept., College of Science, University of Babylon, Hilla City, Babylon Governorate, p.o. 51002, Iraq.
| | - Hawraa Saad Al-Kawaz
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Babylon, Iraq.
| | | | | | | | - Asad M Hadwan
- Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Dunia Abbas Khudhair
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Babylon, Iraq.
| | - Mahmoud Hussein Hadwan
- Chemistry Dept., College of Science, University of Babylon, Hilla City, Babylon Governorate, p.o. 51002, Iraq.
| |
Collapse
|
8
|
Huang H, Lechniak D, Szumacher-Strabel M, Patra AK, Kozłowska M, Kolodziejski P, Gao M, Ślusarczyk S, Petrič D, Cieslak A. The effect of ensiled paulownia leaves in a high-forage diet on ruminal fermentation, methane production, fatty acid composition, and milk production performance of dairy cows. J Anim Sci Biotechnol 2022; 13:104. [PMID: 35953848 PMCID: PMC9373331 DOI: 10.1186/s40104-022-00745-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The use of industrial by-products rich in bioactive compounds as animal feeds can reduce greenhouse gas production. Paulownia leaves silage (PLS) was supplemented to dairy cows' diet and evaluated in vitro (Exp. 1; Rusitec) and in vivo (Exp. 2, cannulated lactating dairy cows and Exp. 3, non-cannulated lactating dairy cows). The study investigated the PLS effect on ruminal fermentation, microbial populations, methane production and concentration, dry matter intake (DMI), and fatty acid (FA) proportions in ruminal fluid and milk. RESULTS Several variables of the ruminal fluid were changed in response to the inclusion of PLS. In Exp. 1, the pH increased linearly and quadratically, whereas ammonia and total volatile fatty acid (VFA) concentrations increased linearly and cubically. A linear, quadratic, and cubical decrease in methane concentration was observed with increasing dose of the PLS. Exp. 2 revealed an increase in ruminal pH and ammonia concentrations, but no changes in total VFA concentration. Inclusion of PLS increased ruminal propionate (at 3 h and 6 h after feeding), isovalerate, and valerate concentrations. Addition of PLS also affected several populations of the analyzed microorganisms. The abundances of protozoa and bacteria were increased, whereas the abundance of archaea were decreased by PLS. Methane production decreased by 11% and 14% in PLS-fed cows compared to the control in Exp. 2 and 3, respectively. Exp. 3 revealed a reduction in the milk protein and lactose yield in the PLS-fed cows, but no effect on DMI and energy corrected milk yield. Also, the PLS diet affected the ruminal biohydrogenation process with an increased proportions of C18:3 cis-9 cis-12 cis-15, conjugated linoleic acid, C18:1 trans-11 FA, polyunsaturated fatty acids (PUFA), and reduced n6/n3 ratio and saturated fatty acids (SFA) proportion in milk. The relative transcript abundances of the 5 of 6 analyzed genes regulating FA metabolism increased. CONCLUSIONS The dietary PLS replacing the alfalfa silage at 60 g/kg diet can reduce the methane emission and improve milk quality with greater proportions of PUFA, including conjugated linoleic acid, and C18:1 trans-11 along with reduction of SFA. Graphical abstract of the experimental roadmap.
Collapse
Affiliation(s)
- Haihao Huang
- Department of Animal Nutrition, Poznań University of Life Sciences, Wołyńska 33, 60-637, Poznań, Poland
| | - Dorota Lechniak
- Department of Genetics and Animal Breeding, Poznań University of Life Sciences, Wolynska 33, Poznań, 60-637, Poland
| | | | - Amlan Kumar Patra
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, 37 K. B. Sarani, Kolkata, India
| | - Martyna Kozłowska
- Department of Animal Nutrition, Poznań University of Life Sciences, Wołyńska 33, 60-637, Poznań, Poland.,Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, 37 K. B. Sarani, Kolkata, India.,Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552, Magdalenka, Warsaw, Poland
| | - Pawel Kolodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Wolynska 35, Poznan, 60-637, Poland
| | - Min Gao
- Department of Animal Nutrition, Poznań University of Life Sciences, Wołyńska 33, 60-637, Poznań, Poland
| | - Sylwester Ślusarczyk
- Department of Pharmaceutical Biology and Botanic Garden of Medicinal Plants, Wrocław Medical University, Wrocław, 50-556, Poland
| | - Daniel Petrič
- Institute of Animal Physiology, Centre of Biosciences of Slovak Academy of Sciences, Šoltésovej 4-6, 040-01, Košice, Slovak Republic
| | - Adam Cieslak
- Department of Animal Nutrition, Poznań University of Life Sciences, Wołyńska 33, 60-637, Poznań, Poland. .,Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Poznań, 60-637, Poland.
| |
Collapse
|
9
|
Bharanidharan R, Thirugnanasambantham K, Ibidhi R, Baik M, Kim TH, Lee Y, Kim KH. Metabolite Profile, Ruminal Methane Reduction, and Microbiome Modulating Potential of Seeds of Pharbitis nil. Front Microbiol 2022; 13:892605. [PMID: 35615517 PMCID: PMC9125194 DOI: 10.3389/fmicb.2022.892605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
We identified metabolites in the seeds of Pharbitis nil (PA) and evaluated their effects on rumen methanogenesis, fiber digestibility, and the rumen microbiome in vitro and in sacco. Four rumen-cannulated Holstein steers (mean body weight 507 ± 32 kg) were used as inoculum donor for in vitro trial and live continuous culture system for in sacco trial. PA was tested in vitro at doses ranging from 4.5 to 45.2% dry matter (DM) substrate. The in sacco trial was divided into three phases: a control phase of 10 days without nylon bags containing PA in the rumen, a treatment phase of 11 days in which nylon bags containing PA (180 g) were placed in the rumen, and a recovery phase of 10 days after removing the PA-containing bags from the rumen. Rumen headspace gas and rumen fluid samples were collected directly from the rumen. PA is enriched in polyunsaturated fatty acids dominated by linoleic acid (C18:2) and flavonoids such as chlorogenate, quercetin, quercetin-3-O-glucoside, and quinic acid derivatives. PA decreased (p < 0.001) methane (CH4) production linearly in vitro with a reduction of 24% at doses as low as 4.5% DM substrate. A quadratic increase (p = 0.078) in neutral detergent fiber digestibility was also noted, demonstrating that doses < 9% DM were optimal for simultaneously enhancing digestibility and CH4 reduction. In sacco, a 50% decrease (p = 0.087) in CH4 coupled with an increase in propionate suggested increased biohydrogenation in the treatment phase. A decrease (p < 0.005) in ruminal ammonia nitrogen (NH3-N) was also noted with PA in the rumen. Analysis of the rumen microbiome revealed a decrease (p < 0.001) in the Bacteroidetes-to-Firmicutes ratio, suggesting PA to have antiprotozoal potential. At the genus level, a 78% decrease in Prevotella spp. and a moderate increase in fibrolytic Ruminococcus spp. were noted in the treatment phase. In silico binding of PA metabolites to cyclic GMP-dependent protein kinase of Entodinium caudatum supported the antiprotozoal effect of PA. Overall, based on its high nutrient value and antiprotozoal activity, PA could probably replace the ionophores used for CH4 abatement in the livestock industry.
Collapse
Affiliation(s)
- Rajaraman Bharanidharan
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Krishnaraj Thirugnanasambantham
- Department of Ecofriendly Livestock Science, Institutes of Green-Bio Science and Technology, Seoul National University, Pyeongchang, South Korea
- Pondicherry Centre for Biological Science and Educational Trust, Villupuram, India
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Ridha Ibidhi
- Department of Ecofriendly Livestock Science, Institutes of Green-Bio Science and Technology, Seoul National University, Pyeongchang, South Korea
| | - Myunggi Baik
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Tae Hoon Kim
- Department of International Agricultural Technology, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea
| | - Yookyung Lee
- National Institute of Animal Sciences, Rural Development Administration, Jeonju, South Korea
| | - Kyoung Hoon Kim
- Department of Ecofriendly Livestock Science, Institutes of Green-Bio Science and Technology, Seoul National University, Pyeongchang, South Korea
- Department of International Agricultural Technology, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, South Korea
- *Correspondence: Kyoung Hoon Kim,
| |
Collapse
|