1
|
Ahmad SF, Gangwar M, Kumar A, Kumar A, Dige MS, Jha GK, Gaur GK, Dutt T. Dissecting genomes of multiple yak populations: unveiling ancestry and high-altitude adaptation through whole-genome resequencing analysis. BMC Genomics 2025; 26:214. [PMID: 40033180 DOI: 10.1186/s12864-025-11387-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/19/2025] [Indexed: 03/05/2025] Open
Abstract
The present study was undertaken to elucidate the population structure and differentiation of Indian yak from Chinese and wild cohorts on genome-wide scale by identifying the selection sweeps and genomic basis of their adaptation across different comparisons while analyzing whole genome sequencing (WGS) data using latest bioinformatics tools. The study included 105 individuals from three distinct yak populations i.e., Indian yak (n = 29); Chinese yak (n = 61) and wild yak (n = 15), hypothesized to be related along the evolutionary timescale. Efficient variant calling and quality control in GATK and PLINK programs resulted in around 1 million (1,002,970) high-quality (LD-independent) SNPs with an average genotyping rate of 96.55%. The PCA, ADMIXTURE and TREEMIX analysis revealed stratification of the yak groups into three distinct clusters. The empirical distribution pattern of minor allele frequency (MAF) of SNPs on genome-wide scale was also elucidated for three yak cohorts revealing unique distribution across five different bins. The selection signature analysis revealed candidate genes that are important for the adaptation of Indian yak against harsh environmental conditions in their habitats. Under iHS analysis, several genes were identified to be under selection pressure in Indian yak including ABCA12, EXOC1, JUNB, KLF1, PRDX2, NANOS3, RFX1, RFX2, and CACNG7. On the other hand, across population analysis revealed the genes like NR2F2, OSBPL10, CIDEC, WFIKKN2, ADCY, THSD7A, ADGRB3, TRPC1, VASH2, and ABHD5 to be part of selective sweeps under these comparisons. A total of 53 genes were found common between intra- and inter-population selection signature analysis of Indian yak. Notably, the genes harbouring the SNPs under selection pressure were significant for adaptation traits including lipidogenesis, energy metabolism, thermogenesis, hair follicle formation, oxidation-reduction reactions, hypoxia and reproduction. These genes may be evaluated as candidate genes for livestock adaptation to harsh environmental conditions and to further the research and application in the present era of climate change.
Collapse
Affiliation(s)
- Sheikh Firdous Ahmad
- ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243 122, India.
| | - Munish Gangwar
- ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243 122, India
| | - Amit Kumar
- ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243 122, India.
| | - Amod Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132 001, India
| | | | - Girish Kumar Jha
- ICAR-Indian Agricultural Statistics Research Institute, Pusa, New Delhi, 110 012, India
| | - Gyanendra Kumar Gaur
- ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243 122, India
- Assistant Director General (Animal Production and Breeding), Indian Council of Agricultural Research, Krishi Bhawan, New Delhi, 110 001, India
| | - Triveni Dutt
- ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243 122, India
| |
Collapse
|
2
|
Gangwar M, Ahmad SF, Ali AB, Kumar A, Kumar A, Gaur GK, Dutt T. Identifying low-density, ancestry-informative SNP markers through whole genome resequencing in Indian, Chinese, and wild yak. BMC Genomics 2024; 25:1043. [PMID: 39501152 PMCID: PMC11539683 DOI: 10.1186/s12864-024-10924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
The current investigation was undertaken to elucidate the population-stratifying and ancestry-informative markers in Indian, Chinese, and wild yak populations using whole genome resequencing (WGS) analysis while employing various selection strategies (Delta, Pairwise Wright's Fixation Index-FST, and Informativeness of Assignment) and marker densities (5-25 thousand). The study used WGS data on 105 individuals from three separate yak cohorts i.e., Indian yak (n = 29), Chinese yak (n = 61), and wild yak (n = 15). Variant calling in the GATK program with strict quality control resulted in 1,002,970 high-quality and independent (LD-pruned) SNP markers across the yak autosomes. Analysis was undertaken in toolbox for ranking and evaluation of SNPs (TRES) program wherein three different criteria i.e., Delta, Pairwise Wright's Fixation Index-FST, and Informativeness of Assignment were employed to identify population-stratifying and ancestry-informative markers across various datasets. The top-ranked 5,000 (5K), 10,000 (10K), 15,000 (15K), 20,000 (20K), and 25,000 (25K) SNPs were identified from each dataset while their composition and performance was assessed using different criteria. The average genomic breed clustering of Indian, Chinese, and wild yak cohorts with full density dataset (105 individuals with 1,002,970 markers) was 81.74%, 80.02%, and 83.62%, respectively. Informativeness of Assignment criterion with 10K density emerged as the best combination for three yak cohorts with 86.94%, 96.46%, and 98.20% clustering for Indian, Chinese, and wild yak, respectively. There was an average increase of 7.56%, 22.72%, and 30.35% in genomic breed clustering scores of Indian, Chinese, and wild yak cohorts over the estimates of the original dataset. The selected markers showed overlap multiple protein-coding genes within a 10 kb window including ADGRB3, ANK1, CACNG7, CALN1, CHCHD2, CREBBP, GLI3, KHDRBS2, and OSBPL10. This is the first report ever on elucidating low-density SNP marker sets with population-stratifying and ancestry-informative properties in three yak groups using WGS data. The results gain significance for application of genomic selection using cost-effective low-density SNP panels in global yak species.
Collapse
Affiliation(s)
- Munish Gangwar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| | | | - Abdul Basit Ali
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| | - Amit Kumar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| | - Amod Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Gyanendra Kumar Gaur
- Animal Science Division, Indian Council of Agricultural Research, Krishi Bhawan, New Delhi, 110001, India
| | - Triveni Dutt
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| |
Collapse
|
3
|
Pei J, Xiong L, Wang X, Guo S, Cao M, Ding Z, Kang Y, Chu M, Wu X, Bao P, Guo X. Dynamic changes in cellular atlases and communication patterns within yak ovaries across diverse reproductive states unveiled by single-cell analysis. Front Cell Dev Biol 2024; 12:1444706. [PMID: 39268087 PMCID: PMC11390571 DOI: 10.3389/fcell.2024.1444706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Yaks (Bos grunniens) exhibit exceptional adaptation to the challenging high-altitude environment of the Qinghai-Tibetan plateau, making them the sole bovine species capable of thriving in such exreme conditions. Investigating the cellular and molecular characteristics of yak ovaries across different reproductive states is crucial for gaining insight into their ovarian functions. Herein, the cellular atlases of yak ovaries in different reproductive states were depicted by single-cell RNA-sequencing (scRNA-seq). The cellular atlases of the ovaries were established by identifying specific gene expression patterns of various cell types, including granulosa cells, theca cells, stromal cells, smooth muscle cells, endothelial cells, glial cell, macrophages, natural killer cells, and proliferating cells. The cellular compositions of the ovaries vary among different reproductive states. Furthermore, the granulosa cells comprise six cell subtypes, while theca cells consist of eight cell subtypes. The granulosa cells and theca cells exhibit distinct biological functions throughout different reproductive states. The two cell types were aligned along their respective pseudotime trajectories. Moreover, a cell-to-cell communication network was constructed among distinct cell types within the ovary, spanning the three reproductive states. Notably, during the estrus period, the granulosa cells demonstrated more prominent interactions with other cell types compared to the remaining reproductive states.
Collapse
Affiliation(s)
- Jie Pei
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
| | - Xingdong Wang
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
| | - Mengli Cao
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
| | - Ziqiang Ding
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
| | - Yandong Kang
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
| | - Min Chu
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
| | - Xian Guo
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Liu Y, Ma L, Riqing D, Qu J, Chen J, Zhandu D, Li B, Jiang M. Microbial Metagenomes and Host Transcriptomes Reveal the Dynamic Changes of Rumen Gene Expression, Microbial Colonization and Co-Regulation of Mineral Element Metabolism in Yaks from Birth to Adulthood. Animals (Basel) 2024; 14:1365. [PMID: 38731369 PMCID: PMC11083404 DOI: 10.3390/ani14091365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Yaks are the main pillar of plateau animal husbandry and the material basis of local herdsmen's survival. The level of mineral elements in the body is closely related to the production performance of yaks. In this study, we performed a comprehensive analysis of rumen epithelial morphology, transcriptomics and metagenomics to explore the dynamics of rumen functions, microbial colonization and functional interactions in yaks from birth to adulthood. Bacteria, eukaryotes, archaea and viruses colonized the rumen of yaks from birth to adulthood, with bacteria being the majority. Bacteroidetes and Firmicutes were the dominant phyla in five developmental stages, and the abundance of genus Lactobacillus and Fusobacterium significantly decreased with age. Glycoside hydrolase (GH) genes were the most highly represented in five different developmental stages, followed by glycosyltransferases (GTs) and carbohydrate-binding modules (CBMs), where the proportion of genes coding for CBMs increased with age. Integrating host transcriptome and microbial metagenome revealed 30 gene modules related to age, muscle layer thickness, nipple length and width of yaks. Among these, the MEmagenta and MEturquoise were positively correlated with these phenotypic traits. Twenty-two host genes involved in transcriptional regulation related to metal ion binding (including potassium, sodium, calcium, zinc, iron) were positively correlated with a rumen bacterial cluster 1 composed of Alloprevotella, Paludibacter, Arcobacter, Lactobacillus, Bilophila, etc. Therefore, these studies help us to understand the interaction between rumen host and microorganisms in yaks at different ages, and further provide a reliable theoretical basis for the development of feed and mineral element supplementation for yaks at different ages.
Collapse
Affiliation(s)
- Yili Liu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (Y.L.); (D.R.); (B.L.)
| | - Liangliang Ma
- College of Grassland Resources, Southwest Minzu University, Chengdu 610041, China;
| | - Daojie Riqing
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (Y.L.); (D.R.); (B.L.)
| | - Jiu Qu
- Agriculture and Rural Affairs Bureau of Naqu City, Naqu 852000, China; (J.Q.); (D.Z.)
| | - Jiyong Chen
- Yushu Prefecture Animal Disease Prevention and Control Center, Yushu 815000, China;
| | - Danzeng Zhandu
- Agriculture and Rural Affairs Bureau of Naqu City, Naqu 852000, China; (J.Q.); (D.Z.)
| | - Biao Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (Y.L.); (D.R.); (B.L.)
| | - Mingfeng Jiang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (Y.L.); (D.R.); (B.L.)
| |
Collapse
|
5
|
Xiao-Hong H, Meng W, Yang-Yang P, Jiang-Feng F, Jing-Lei W, Ling Z, Ya-Ying W, Tong-Xiang Z, Tian Z, Tian-Yi D, Yan C, Si-Jiu Y. Effect of follicle-stimulating hormone and luteinizing hormone on apoptosis, autophagy, and the release and reception of some steroid hormones in yak granulosa cells through miR-23a/ASK1 axis. Cell Signal 2024; 115:111010. [PMID: 38128707 DOI: 10.1016/j.cellsig.2023.111010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Follicle-stimulating hormone (FSH), luteinizing hormone (LH), miR-23a, apoptosis signal-regulating kinase 1(ASK1)/c-Jun N-terminal kinase (JNK), autophagy and apoptosis play crucial roles in follicular development. However, their role in yak granulosa cells (GCs) remains unknown. Therefore, we examined the effect of miR-23a, ASK1, FSH, and LH on apoptosis, autophagy, and the release and reception of some steroid hormones in these cells. Our results showed that miR-23a overexpression significantly increased the abundance of Beclin1, the LC3II/I ratio, and the number of Ad-mRFP-GFP-LC3-labeled autophagosomes, and decreased p62 abundance. Additionally, Bax abundance and the number of terminal deoxynucleotidyl transferase deoxynucleotide triphosphate nick end labeling-positive cells were reduced, while Bcl2 expression was increased. Overexpression of miR-23a also significantly increased the abundance of estradiol receptor α (ER-α) and β (ER-β) and the concentrations of estradiol (E2), progesterone (P4) in yak GCs. Here, treating yak GCs with miR-23a decreased ASK1 expression, which regulates ASK1/JNK-mediated apoptosis, autophagy, E2 and P4 levels, and ER-α/β abundance. In contrast, treatment of yak GCs with FSH (10 μg/mL) and LH (100 μg/mL) increased miR-23a abundance, regulating the subsequent effect on ASK1/JNK-mediated apoptosis, autophagy, ER-α/β abundance, and E2 and P4 concentrations. In conclusion, miR-23a enhances autophagy in yak GCs, attenuates apoptosis, and increases ER-α/β abundance and E2 and P4 concentrations by downregulating ASK1. Additionally, FSH and LH can regulate these effects of miR-23a by altering its expression. These results provide important insights that can inform the development of strategies to reduce abnormal follicular atresia and improve the reproductive rate of yaks.
Collapse
Affiliation(s)
- Han Xiao-Hong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Wang Meng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Pan Yang-Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Fan Jiang-Feng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Wang Jing-Lei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhao Ling
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Wang Ya-Ying
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhang Tong-Xiang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhao Tian
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Ding Tian-Yi
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Cui Yan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China
| | - Yu Si-Jiu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Gansu Province Livestock Embryo Engineering Research Center, Lanzhou 730070, China.
| |
Collapse
|
6
|
Zhang Y, Zhou M, Liang Y, Li R, Zhang L, Chen S, Yang K, Ding H, Tan X, Zhang Q, Qiao Z. Study of Transcriptomic Analysis of Yak ( Bos grunniens) and Cattle ( Bos taurus) Pulmonary Artery Smooth Muscle Cells under Oxygen Concentration Gradients and Differences in Their Lung Histology and Expression of Pyruvate Dehydrogenase Kinase 1-Related Factors. Animals (Basel) 2023; 13:3450. [PMID: 38003068 PMCID: PMC10668684 DOI: 10.3390/ani13223450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/27/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The aim of this study was to investigate the molecular mechanisms by which hypoxia affects the biological behavior of yak PASMCs, the changes in the histological structure of yak and cattle lungs, and the relationships and regulatory roles that exist regarding the differences in the distribution and expression of PDK1 and its hypoxia-associated factors screened for their role in the adaptation of yak lungs to the plateau hypoxic environment. The results showed that, at the level of transcriptome sequencing, the molecular regulatory mechanisms of the HIF-1 signaling pathway, glucose metabolism pathway, and related factors (HK2/PGK1/ENO1/ENO3/ALDOC/ALDOA) may be closely related to the adaptation of yaks to the hypoxic environment of the plateau; at the tissue level, the presence of filled alveoli and semi-filled alveoli, thicker alveolar septa and basement membranes, a large number of erythrocytes, capillary distribution, and collagen fibers accounted for all levels of fine bronchioles in the lungs of yaks as compared to cattle. A higher percentage of goblet cells was found in the fine bronchioles of yaks, and PDK1, HIF-1α, and VEGF were predominantly distributed and expressed in the monolayers of ciliated columnar epithelium in the branches of the terminal fine bronchioles of yak and cattle lungs, with a small amount of it distributed in the alveolar septa; at the molecular level, the differences in PDK1 mRNA relative expression in the lungs of adult yaks and cattle were not significant (p > 0.05), the differences in HIF-1α and VEGF mRNA relative expression were significant (p < 0.05), and the expression of PDK1 and HIF-1α proteins in adult yaks was stronger than that in adult cattle. PDK1 and HIF-1α proteins were more strongly expressed in adult yaks than in adult cattle, and the difference was highly significant (p < 0.01); the relative expression of VEGF proteins was not significantly different between adult yaks and cattle (p > 0.05). The possible regulatory relationship between the above results and the adaptation of yak lungs to the plateau hypoxic environment paves the way for the regulatory mechanisms of PDK1, HIF-1α, and VEGF, and provides basic information for studying the mechanism of hypoxic adaptation of yaks in the plateau. At the same time, it provides a reference for human hypoxia adaptation and a target for the prevention and treatment of plateau diseases in humans and plateau animals.
Collapse
Affiliation(s)
- Yiyang Zhang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (Y.Z.); (M.Z.); (R.L.); (S.C.); (Z.Q.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (L.Z.); (H.D.); (X.T.)
| | - Manlin Zhou
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (Y.Z.); (M.Z.); (R.L.); (S.C.); (Z.Q.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (L.Z.); (H.D.); (X.T.)
| | - Yuxin Liang
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (L.Z.); (H.D.); (X.T.)
| | - Rui Li
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (Y.Z.); (M.Z.); (R.L.); (S.C.); (Z.Q.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (L.Z.); (H.D.); (X.T.)
| | - Lan Zhang
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (L.Z.); (H.D.); (X.T.)
| | - Shuwu Chen
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (Y.Z.); (M.Z.); (R.L.); (S.C.); (Z.Q.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (L.Z.); (H.D.); (X.T.)
| | - Kun Yang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (Y.Z.); (M.Z.); (R.L.); (S.C.); (Z.Q.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (L.Z.); (H.D.); (X.T.)
| | - Haie Ding
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (L.Z.); (H.D.); (X.T.)
| | - Xiao Tan
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (L.Z.); (H.D.); (X.T.)
| | - Qian Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| | - Zilin Qiao
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (Y.Z.); (M.Z.); (R.L.); (S.C.); (Z.Q.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (Y.L.); (L.Z.); (H.D.); (X.T.)
| |
Collapse
|