1
|
Shoeibi S, Green E, Wei H, Gou W, Strange C, Wang H. Immortalized mesenchymal stromal cells overexpressing alpha-1 antitrypsin protect acinar cells from apoptotic and ferroptotic cell death. J Cell Mol Med 2024; 28:e70093. [PMID: 39468387 PMCID: PMC11518823 DOI: 10.1111/jcmm.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 10/30/2024] Open
Abstract
Chronic pancreatitis (CP) is a progressive inflammatory disorder that impairs endocrine and exocrine function. Our previous work showed that mesenchymal stem/stromal cells (MSCs) and MSCs overexpressing alpha-1 antitrypsin (AAT-MSCs) could be therapeutic tools for CP. However, primary MSCs are predisposed to undergo senescence during culture expansion, which limits their therapeutic applications. We generated and characterized immortalized human MSCs (iMSCs) and AAT-MSCs (iAAT-MSCs) and tested their protective effect on 2,4,6-Trinitrobenzenesulfonic acid (TNBS)-induced acinar cell death in an in vitro cell culture system. Primary MSCs were immortalized by transduction with simian virus 40 large T antigen (SV40LT), and the resulting iMSC and iAAT-MSC lines were analysed for proliferation, senescence, phenotype and multi-differentiation potential. Subsequently, apoptosis and ferroptosis pathways were investigated by assessing changes before and after TNBS treatment. Coculture of iMSCs and iAAT-MSCs with acinar cell lines inhibited early cell death induced by TNBS, reduced ER stress and reversed TNBS-induced protein reduction at tight junctions. Additionally, iMSCs and iAAT-MSCs exerted such protection by regulating mitochondrial respiration, ATP content and ROS production in TNBS-induced acinar cells. Furthermore, iMSCs and iAAT-MSCs ameliorated TNBS-induced ferroptosis by modulating iron generation and ROS production and regulating the ferritin heavy chain 1 (FTH1)/protein disulfide isomerase (PDI)/glutathione peroxide 4 (GPX4) signalling pathways in acinar cells. These findings identify ferroptosis as an unrecognized mechanism that leads to TNBS-induced cell death and offer mechanistic insights relevant to using stem cell therapy to treat acinar cell death associated with CP.
Collapse
Affiliation(s)
- Sara Shoeibi
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Erica Green
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Hua Wei
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Wenyu Gou
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Charlie Strange
- Department of MedicineMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Hongjun Wang
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
- Ralph H. Johnson Veterans Affairs Medical CenterCharlestonSouth CarolinaUSA
| |
Collapse
|
2
|
Kowalczyk A, Dziubak D, Kasprzak A, Sobczak K, Ruzycka-Ayoush M, Bamburowicz-Klimkowska M, Sęk S, Rios-Mondragon I, Żołek T, Runden-Pran E, Shaposhnikov S, Cimpan MR, Dusinska M, Grudzinski IP, Nowicka AM. Surface-Bioengineered Extracellular Vesicles Seeking Molecular Biotargets in Lung Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31997-32016. [PMID: 38869318 PMCID: PMC11212023 DOI: 10.1021/acsami.4c04265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
Personalized medicine is a new approach to modern oncology. Here, to facilitate the application of extracellular vesicles (EVs) derived from lung cancer cells as potent advanced therapy medicinal products in lung cancer, the EV membrane was functionalized with a specific ligand for targeting purposes. In this role, the most effective heptapeptide in binding to lung cancer cells (PTHTRWA) was used. The functionalization process of EV surface was performed through the C- or N-terminal end of the heptapeptide. To prove the activity of the EVs functionalized with PTHTRWA, both a model of lipid membrane mimicking normal and cancerous cell membranes as well as human adenocarcinomic alveolar basal epithelial cells (A549) and human normal bronchial epithelial cells (BEAS-2B) have been exposed to these bioconstructs. Magnetic resonance imaging (MRI) showed that the as-bioengineered PTHTRWA-EVs loaded with superparamagnetic iron oxide nanoparticle (SPIO) cargos reach the growing tumor when dosed intravenously in NUDE Balb/c mice bearing A549 cancer. Molecular dynamics (MD) in silico studies elucidated a high affinity of the synthesized peptide to the α5β1 integrin. Preclinical safety assays did not evidence any cytotoxic or genotoxic effects of the PTHTRWA-bioengineered EVs.
Collapse
Affiliation(s)
- Agata Kowalczyk
- Faculty
of Chemistry, University of Warsaw, Pasteura Str. 1, Warsaw PL-02-093, Poland
| | - Damian Dziubak
- Faculty
of Chemistry, University of Warsaw, Pasteura Str. 1, Warsaw PL-02-093, Poland
- Faculty
of Chemistry, Biological and Chemical Research
Centre, University of Warsaw, Żwirki i Wigury 101 Street, Warsaw PL-02-089, Poland
| | - Artur Kasprzak
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, Warsaw 00-664, Poland
| | - Kamil Sobczak
- Faculty
of Chemistry, Biological and Chemical Research
Centre, University of Warsaw, Żwirki i Wigury 101 Street, Warsaw PL-02-089, Poland
| | - Monika Ruzycka-Ayoush
- Department
of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, Warsaw PL-02-097, Poland
| | - Magdalena Bamburowicz-Klimkowska
- Department
of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, Warsaw PL-02-097, Poland
| | - Sławomir Sęk
- Faculty
of Chemistry, University of Warsaw, Pasteura Str. 1, Warsaw PL-02-093, Poland
- Faculty
of Chemistry, Biological and Chemical Research
Centre, University of Warsaw, Żwirki i Wigury 101 Street, Warsaw PL-02-089, Poland
| | - Ivan Rios-Mondragon
- Biomaterials
- Department for Clinical Dentistry, University
of Bergen, Årstadveien
19, Bergen 5009, Norway
| | - Teresa Żołek
- Department
of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, Warsaw PL-02-097, Poland
| | - Elise Runden-Pran
- Health
Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research, Kjeller 2007, Norway
| | | | - Mihaela Roxana Cimpan
- Biomaterials
- Department for Clinical Dentistry, University
of Bergen, Årstadveien
19, Bergen 5009, Norway
| | - Maria Dusinska
- Health
Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research, Kjeller 2007, Norway
| | - Ireneusz P. Grudzinski
- Department
of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, Warsaw PL-02-097, Poland
| | - Anna M. Nowicka
- Faculty
of Chemistry, University of Warsaw, Pasteura Str. 1, Warsaw PL-02-093, Poland
| |
Collapse
|
3
|
Stawarska A, Bamburowicz-Klimkowska M, Runden-Pran E, Dusinska M, Cimpan MR, Rios-Mondragon I, Grudzinski IP. Extracellular Vesicles as Next-Generation Diagnostics and Advanced Therapy Medicinal Products. Int J Mol Sci 2024; 25:6533. [PMID: 38928240 PMCID: PMC11204223 DOI: 10.3390/ijms25126533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Extracellular vesicles (EVs) hold great promise for clinical application as new diagnostic and therapeutic modalities. This paper describes major GMP-based upstream and downstream manufacturing processes for EV large-scale production, also focusing on post-processing technologies such as surface bioengineering and uploading studies to yield novel EV-based diagnostics and advanced therapy medicinal products. This paper also focuses on the quality, safety, and efficacy issues of the bioengineered EV drug candidates before first-in-human studies. Because clinical trials involving extracellular vesicles are on the global rise, this paper encompasses different clinical studies registered on clinical-trial register platforms, with varying levels of advancement, highlighting the growing interest in EV-related clinical programs. Navigating the regulatory affairs of EVs poses real challenges, and obtaining marketing authorization for EV-based medicines remains complex due to the lack of specific regulatory guidelines for such novel products. This paper discusses the state-of-the-art regulatory knowledge to date on EV-based diagnostics and medicinal products, highlighting further research and global regulatory needs for the safe and reliable implementation of bioengineered EVs as diagnostic and therapeutic tools in clinical settings. Post-marketing pharmacovigilance for EV-based medicinal products is also presented, mainly addressing such topics as risk assessment and risk management.
Collapse
Affiliation(s)
- Agnieszka Stawarska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, 02-097 Warsaw, Poland; (M.B.-K.); (I.P.G.)
| | - Magdalena Bamburowicz-Klimkowska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, 02-097 Warsaw, Poland; (M.B.-K.); (I.P.G.)
| | - Elise Runden-Pran
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research, 2007 Kjeller, Norway; (E.R.-P.); (M.D.)
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research, 2007 Kjeller, Norway; (E.R.-P.); (M.D.)
| | - Mihaela Roxana Cimpan
- Biomaterials—Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien Str. 19, 5009 Bergen, Norway; (M.R.C.); (I.R.-M.)
| | - Ivan Rios-Mondragon
- Biomaterials—Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien Str. 19, 5009 Bergen, Norway; (M.R.C.); (I.R.-M.)
| | - Ireneusz P. Grudzinski
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, 02-097 Warsaw, Poland; (M.B.-K.); (I.P.G.)
| |
Collapse
|
4
|
Wolf B, Muralidharan P, Lee MY, Hua W, Green E, Wang H, Strange C. Overexpression of Alpha-1 Antitrypsin Increases the Proliferation of Mesenchymal Stem Cells by Upregulation of Cyclin D1. Int J Mol Sci 2024; 25:2015. [PMID: 38396691 PMCID: PMC10889413 DOI: 10.3390/ijms25042015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/08/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Alpha-1 antitrypsin-overexpressing mesenchymal stromal/stem cells (AAT-MSCs) showed improved innate properties with a faster proliferation rate when studied for their protective effects in mouse models of diseases. Here, we investigated the potential mechanism(s) by which AAT gene insertion increases MSC proliferation. Human bone marrow-derived primary or immortalized MSCs (iMSCs) or AAT-MSCs (iAAT-MSCs) were used in the study. Cell proliferation was measured by cell counting and cell cycle analysis. Possible pathways involved in the pro-proliferation effect of AAT were investigated by measuring mRNA and protein expression of key cell cycle genes. Interval cell counting showed increased proliferation in AAT-MSCs or iAAT-MSCs compared to their corresponding MSC controls. Cell cycle analysis revealed more cells progressing into the S and G2/M phases in iAAT-MSCs, with a notable increase in the cell cycle protein, Cyclin D1. Moreover, treatment with Cyclin D1 inhibitors showed that the increase in proliferation is due to Cyclin D1 and that the AAT protein is upstream and a positive regulator of Cyclin D1. Furthermore, AAT's effect on Cyclin D1 is independent of the Wnt signaling pathway as there were no differences in the expression of regulatory proteins, including GSK3β and β-Catenin in iMSC and iAAT-MSCs. In summary, our results indicate that AAT gene insertion in an immortalized MSC cell line increases cell proliferation and growth by increasing Cyclin D1 expression and consequently causing cells to progress through the cell cycle at a significantly faster rate.
Collapse
Affiliation(s)
- Bryan Wolf
- Department of Surgery and Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (B.W.); (P.M.); (W.H.); (E.G.); (H.W.)
| | - Prasanth Muralidharan
- Department of Surgery and Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (B.W.); (P.M.); (W.H.); (E.G.); (H.W.)
| | - Michael Y. Lee
- Academic Magnet High School, North Charleston, SC 29405, USA;
| | - Wei Hua
- Department of Surgery and Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (B.W.); (P.M.); (W.H.); (E.G.); (H.W.)
| | - Erica Green
- Department of Surgery and Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (B.W.); (P.M.); (W.H.); (E.G.); (H.W.)
| | - Hongjun Wang
- Department of Surgery and Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (B.W.); (P.M.); (W.H.); (E.G.); (H.W.)
- Ralph H. Johnson Veterans Affairs Medical Center, Medical University of South Carolina, Charleston, SC 29401, USA
| | - Charlie Strange
- Department of Medicine, Medical University of South Carolina, CSB 816, 96 Jonathan Lucas St., Charleston, SC 29425, USA
| |
Collapse
|
5
|
Wolf B, Muralidharan P, Lee M, Hua W, Green E, Wang H, Strange C. Overexpression of Alpha-1 Antitrypsin Increases the Proliferation of Mesenchymal Stem Cells by Upregulation of Cyclin D1 and is Independent of the Wnt Signaling Pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.28.564526. [PMID: 37961658 PMCID: PMC10634889 DOI: 10.1101/2023.10.28.564526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Alaph-1 antitrypsin overexpressing mesenchymal stromal/stem cells (AAT-MSCs) showed improved innate properties with a faster proliferation rate when studied for their protective effects in mouse models of diseases. Here, we investigated the potential mechanism(s) by which AAT gene insertion increases MSC proliferation. Human bone marrow-derived primary or immortalized MSCs (iMSCs) or AAT-MSCs (iAAT-MSCs) were used in the study. Cell proliferation was measured by cell counting and cell cycle analysis. Possible pathways involved in the pro-proliferation effect of AAT were investigated by measuring mRNA and protein expression of key cell cycle genes. Interval cell counting showed increased proliferation in AAT-MSCs or iAAT-MSCs compared to their corresponding MSC controls. Cell cycle analysis revealed more cells progressing into the S and G2/M phases in iAAT-MSCs, with a notable increase in the cell cycle protein, Cyclin D1. Moreover, treatment with Cyclin D1 inhibitors showed that the increase in proliferation is due to Cyclin D1 and that the AAT protein is upstream and a positive regulator of Cyclin D1. Furthermore, AAT's effect on Cyclin D1 is independent of the Wnt signaling pathway as there were no differences in the expression of regulatory proteins, including GSK3β and β-Catenin in iMSC and iAAT-MSCs. In summary, our results indicate that AAT gene insertion in an immortalized MSC cell line increases cell proliferation and growth by increasing Cyclin D1 expression and consequently causing cells to progress through the cell cycle at a significantly faster rate.
Collapse
|
6
|
Luo Q, Liu J, Fu Q, Zhang X, Yu P, Liu P, Zhang J, Tian H, Chen S, Zhang H, Qin T. Identifying cancer cell‐secreted proteins that activate cancer‐associated fibroblasts as prognostic factors for patients with pancreatic cancer. J Cell Mol Med 2022; 26:5657-5669. [DOI: 10.1111/jcmm.17596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/26/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Qiankun Luo
- Department of Hepatobilliary and Pancreatic surgery Zhengzhou University People's Hospital, Henan Provincial People's Hospital Zhengzhou China
| | - Jiayin Liu
- Department of Hepatobilliary and Pancreatic surgery Zhengzhou University People's Hospital, Henan Provincial People's Hospital Zhengzhou China
| | - Qiang Fu
- Department of Hepatobilliary and Pancreatic surgery Zhengzhou University People's Hospital, Henan Provincial People's Hospital Zhengzhou China
| | - Xu Zhang
- Department of Hepatobilliary and Pancreatic surgery Zhengzhou University People's Hospital, Henan Provincial People's Hospital Zhengzhou China
| | - Pengfei Yu
- Department of Hepatobilliary and Pancreatic surgery Zhengzhou University People's Hospital, Henan Provincial People's Hospital Zhengzhou China
| | - Pan Liu
- Department of Hepatobilliary and Pancreatic surgery Zhengzhou University People's Hospital, Henan Provincial People's Hospital Zhengzhou China
| | - Jiali Zhang
- Academy of Medical Sciences, Zhengzhou University Zhengzhou China
| | - Huiyuan Tian
- Department of Research and Discipline Development Henan Provincial People's Hospital, Zhengzhou University People's Hospital Zhengzhou China
| | - Song Chen
- Translational Research Institute, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, and Molecular Pathology Center Academy of Medical Sciences, Zhengzhou University Zhengzhou China
| | - Hongwei Zhang
- Department of Hepatobilliary and Pancreatic surgery Zhengzhou University People's Hospital, Henan Provincial People's Hospital Zhengzhou China
- Henan University People's Hospital Zhengzhou China
| | - Tao Qin
- Department of Hepatobilliary and Pancreatic surgery Zhengzhou University People's Hospital, Henan Provincial People's Hospital Zhengzhou China
- Henan University People's Hospital Zhengzhou China
| |
Collapse
|
7
|
Preconditioning and Engineering Strategies for Improving the Efficacy of Mesenchymal Stem Cell-Derived Exosomes in Cell-Free Therapy. Stem Cells Int 2022; 2022:1779346. [PMID: 35607400 PMCID: PMC9124131 DOI: 10.1155/2022/1779346] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/07/2022] [Accepted: 04/23/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been widely applied to regenerative medicine owing to their multiple differentiation, self-renewal, and immunomodulatory abilities. Exosomes are cell-secreted natural nanovesicles and thought to be mediators of intercellular communication and material transport. The therapeutic potential of MSCs can be largely attributed to MSC-derived exosomes (MSC-exosomes). Emerging evidence suggests that the therapeutic efficacy of MSC-exosomes is highly dependent on the status of MSCs, and optimization of the extracellular environment affects the exosomal content. Pretreatment methods including three-dimensional cultures, hypoxia, and other biochemical cues have been shown to potentially enhance the biological activity of MSC-exosomes while maintaining or enhancing their production. On the other hand, engineering means to enhance the desired function of MSC-exosomes has been rapidly gaining attention. In particular, biologically active molecule encapsulation and membrane modification can alter or enhance biological functions and targeting of MSC-exosomes. In this review, we summarize two possible strategies to improve the therapeutic activity of MSC-exosomes: preconditioning approaches and engineering exosomes. We also explore the underlying mechanisms of different strategies and discuss their advantages and limitations of the upcoming clinical applications.
Collapse
|