1
|
Yu SQ, Li P, Li HJ, Shang LJ, Guo R, Sun XM, Ren QQ. Highly Sensitive Detection of Hydrogen Peroxide in Cancer Tissue Based on 3D Reduced Graphene Oxide-MXene-Multi-Walled Carbon Nanotubes Electrode. BIOSENSORS 2024; 14:261. [PMID: 38920565 PMCID: PMC11201644 DOI: 10.3390/bios14060261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/11/2024] [Accepted: 05/19/2024] [Indexed: 06/27/2024]
Abstract
Hydrogen peroxide (H2O2) is a signaling molecule that has the capacity to control a variety of biological processes in organisms. Cancer cells release more H2O2 during abnormal tumor growth. There has been a considerable amount of interest in utilizing H2O2 as a biomarker for the diagnosis of cancer tissue. In this study, an electrochemical sensor for H2O2 was constructed based on 3D reduced graphene oxide (rGO), MXene (Ti3C2), and multi-walled carbon nanotubes (MWCNTs) composite. Three-dimensional (3D) rGO-Ti3C2-MWCNTs sensor showed good linearity for H2O2 in the ranges of 1-60 μM and 60 μM-9.77 mM at a working potential of -0.25 V, with sensitivities of 235.2 µA mM-1 cm-2 and 103.8 µA mM-1 cm-2, respectively, and a detection limit of 0.3 µM (S/N = 3). The sensor exhibited long-term stability, good repeatability, and outstanding immunity to interference. In addition, the modified electrode was employed to detect real-time H2O2 release from cancer cells and cancer tissue ex vivo.
Collapse
Affiliation(s)
| | | | | | | | | | - Xu-Ming Sun
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (S.-Q.Y.); (P.L.); (H.-J.L.); (L.-J.S.); (R.G.)
| | - Qiong-Qiong Ren
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (S.-Q.Y.); (P.L.); (H.-J.L.); (L.-J.S.); (R.G.)
| |
Collapse
|
2
|
Chmielecki A, Bortnik K, Galczynski S, Kopacz K, Padula G, Jerczynska H, Stawski R, Nowak D. Interleukin-4 during post-exercise recovery negatively correlates with the production of phagocyte-generated oxidants. Front Physiol 2023; 14:1186296. [PMID: 38192745 PMCID: PMC10773862 DOI: 10.3389/fphys.2023.1186296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/02/2023] [Indexed: 01/10/2024] Open
Abstract
Exhaustive run induced a biphasic oxidative response of circulating phagocytes in 16 amateur sportsmen. The first phase involved an increment just after exercise of enhanced whole blood chemiluminescence normalized per phagocyte count, whereas in the second phase a decrement from 1 h post-exercise and ongoing till 24 h. We tested whether plasma Interleukin IL-4, IL-8, IL-10 and Tumor Necrosis Factor α concentrations change in response to exhaustive run and whether there are associations between their levels and delta resting. Moreover, IL-8 and IL-10 significantly increased immediately post-exercise and after 1 h, but later normalized. Tumor necrosis factor α rose by 1.1-times only just after exercise. However, none of these cytokines showed any correlation with the investigated chemiluminescence. Exercise did not alter plasma concentrations of IL-4. However, pre-exercise IL-4 negatively correlated with measured luminescence just after exercise (ρ = -0.54, p < 0.05), and also tended to be negatively associated with decrements of the second phase at 1 h post-exercise ρ = -0.45, p = 0.08. It is suggested that plasma IL-4, by a negative association with blood phagocytes oxidants production, could be involved in the maintenance of proper balance between oxidants and anti-oxidants during strenuous exercise and post-exercise recovery.
Collapse
Affiliation(s)
| | | | - Szymon Galczynski
- Academic Laboratory of Movement and Human Physical Performance “DynamoLab”, Medical University of Lodz, Łódź, Poland
| | - Karolina Kopacz
- Academic Laboratory of Movement and Human Physical Performance “DynamoLab”, Medical University of Lodz, Łódź, Poland
| | - Gianluca Padula
- Academic Laboratory of Movement and Human Physical Performance “DynamoLab”, Medical University of Lodz, Łódź, Poland
| | - Hanna Jerczynska
- Central Scientific Laboratory, Medical University of Lodz, Łódź, Poland
| | - Robert Stawski
- Department of Clinical Physiology, Medical University of Lodz, Łódź, Poland
| | - Dariusz Nowak
- Department of Clinical Physiology, Medical University of Lodz, Łódź, Poland
| |
Collapse
|
3
|
Nowak PJ, Sokołowski Ł, Meissner P, Pawłowicz-Szlarska E, Sarniak A, Włodarczyk A, Wlazeł RN, Prymont-Przymińska A, Nowak D, Nowicki M. Kidney Transplant Recipients Show Limited Lung Diffusion Capacity but Similar Hydrogen Peroxide Exhalation as Healthy Matched Volunteers: A Pilot Study. J Clin Med 2023; 12:6964. [PMID: 38002579 PMCID: PMC10672367 DOI: 10.3390/jcm12226964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Patients with end-stage chronic kidney disease show higher systemic oxidative stress and exhale more hydrogen peroxide (H2O2) than healthy controls. Kidney transplantation reduces oxidative stress and H2O2 production by blood polymorphonuclear leukocytes (PMNs). Kidney transplant recipients (KTRs) may be predisposed to an impairment of lung diffusing capacity due to chronic inflammation. Lung function and H2O2 concentration in the exhaled breath condensate (EBC) were compared in 20 KTRs with stable allograft function to 20 healthy matched controls. Serum interleukin eight (IL-8) and C-reactive protein (CRP), blood cell counts, and spirometry parameters did not differ between groups. However, KTRs showed lower total lung diffusing capacity for carbon monoxide, corrected for hemoglobin concentration (TLCOc), in comparison to healthy controls (92.1 ± 11.5% vs. 102.3 ± 11.9% of predicted, p = 0.009), but similar EBC H2O2 concentration (1.63 ± 0.52 vs. 1.77 ± 0.50 µmol/L, p = 0.30). The modality of pre-transplant renal replacement therapy had no effect on TLCOc and EBC H2O2. TLCOc did not correlate with time after transplantation. In this study, TLCOc was less reduced in KTRs in comparison to previous reports. We suggest this fact and the non-elevated H2O2 exhalation exhibited by KTRs, may result perhaps from the evolution of the immunosuppressive therapy.
Collapse
Affiliation(s)
- Piotr Jan Nowak
- Department of Nephrology, Hypertension and Kidney Transplantation, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland; (E.P.-S.); (M.N.)
| | - Łukasz Sokołowski
- Department of Obstetrics and Gynecology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland;
| | - Paweł Meissner
- University Laboratory of Blood Pressure Regulation and Function of the Autonomic Nervous System, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| | - Ewa Pawłowicz-Szlarska
- Department of Nephrology, Hypertension and Kidney Transplantation, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland; (E.P.-S.); (M.N.)
| | - Agata Sarniak
- Department of Clinical Physiology, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (A.S.); (A.P.-P.); (D.N.)
| | - Anna Włodarczyk
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| | - Rafał Nikodem Wlazeł
- Department of Laboratory Diagnostics and Clinical Biochemistry, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland;
| | - Anna Prymont-Przymińska
- Department of Clinical Physiology, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (A.S.); (A.P.-P.); (D.N.)
| | - Dariusz Nowak
- Department of Clinical Physiology, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (A.S.); (A.P.-P.); (D.N.)
| | - Michał Nowicki
- Department of Nephrology, Hypertension and Kidney Transplantation, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland; (E.P.-S.); (M.N.)
| |
Collapse
|