1
|
Older CE, Goodman PM, Reifers JG, Yamamoto FY. Differences in the bacterial communities along the intestinal tract of juvenile channel ( Ictalurus punctatus) and hybrid ( I. punctatus× I. furcatus) catfish. Physiol Genomics 2025; 57:299-307. [PMID: 40019745 DOI: 10.1152/physiolgenomics.00008.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/20/2025] [Accepted: 02/12/2025] [Indexed: 03/01/2025] Open
Abstract
Hybrid catfish (Ictalurus punctatus × I. furcatus) is the preferred catfish for US aquaculture due to the heterosis exhibited in many production traits. Improvements in fry production protocols have enabled widespread adoption of these hybrids, with producers using management practices optimized for channel catfish. Research to consider differences, outside of production traits, which may exist between hybrids and their parent species is lacking. Utilizing management practices specifically designed for hybrids may improve production efficiency. The gut microbiome plays critical roles in host development and health and, thus, is relevant to production. In the present study, the microbiota in the anterior, middle, and posterior segments of the intestinal tract were compared between channel and hybrid catfish using high-throughput 16S rRNA gene sequencing. Bacterial community structure was different between channels and hybrids across all intestinal segments (P < 0.05) despite a lack of difference in community diversity. Cetobacterium spp. were found in higher abundances in the middle intestinal segment of hybrids compared with channels (q = 0.02) and found to have a trend of increasing abundance with increasingly distal segments in both channels and hybrids (q < 0.05). Vibrio spp., a low-abundance taxon, was similarly found in higher abundances in the anterior segment of hybrids. These results provide evidence of differences in the gut microbiomes of channels and hybrids and insight into the bacterial communities along the catfish intestinal tract. Additional research will be valuable in understanding why do differences between channel and hybrid catfish exist and how they may contribute to variation in gut microbiome-related production traits.NEW & NOTEWORTHY Hybrid and channel catfish are inhabited by gut bacterial communities of similar overall diversity but of significantly different structure and composition. Cetobacterium spp., a genus previously shown to confer benefits in other hosts, was found in higher abundances in the middle intestinal segment of hybrids and was found to have increasing abundance along the intestinal tract of both channels and hybrids.
Collapse
Affiliation(s)
- Caitlin E Older
- Warmwater Aquaculture Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Stoneville, Mississippi, United States
| | - Penelope M Goodman
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi Agriculture and Forestry Experiment Station, Mississippi State University, Stoneville, Mississippi, United States
| | - J Grant Reifers
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi Agriculture and Forestry Experiment Station, Mississippi State University, Stoneville, Mississippi, United States
| | - Fernando Y Yamamoto
- Thad Cochran National Warmwater Aquaculture Center, Delta Research and Extension Center, Mississippi Agriculture and Forestry Experiment Station, Mississippi State University, Stoneville, Mississippi, United States
- Department of Wildlife, Fisheries and Aquaculture, Mississippi State University, Mississippi State, Mississippi, United States
| |
Collapse
|
2
|
Xie M, Zhou Y, Gong Y, Liu M, Zhen P, Li Z, Zhou L, Gui J, Wang Z. Growth Superiority and Genetic Characterization of the Hybrid from Female Ussuri Catfish ( Pseudobagrus ussuriensis) and Male Longsnout Catfish ( Leiocassis longirostris). Animals (Basel) 2024; 14:3617. [PMID: 39765521 PMCID: PMC11672424 DOI: 10.3390/ani14243617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/27/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Crossbreeding is a traditional breeding technique and has been performed successfully in many fish species. However, distant hybridization between different genera is hard to be successful because of reproductive isolation. In this study, diploid hybrids (PL) were successfully derived from the hybridization of Ussuri catfish (Pseudobagrus ussuriensis, PU, ♀, 2n = 52) and longsnout catfish (Leiocassis longirostris, LL, ♂, 2n = 52). And the morphological data, external frame parameters, chromosomal karyotypes, DNA content measurement, mitochondrial DNA control region, and species-specific marker identification were applied to investigate the traits and genetic characterization of the PL hybrid offspring and their parents. Both quantifiable traits and shape frame parameters of the PL hybrid offspring were revealed to be intermediate between those of their parents; however, cluster analysis showed that their external morphology was more in favor of the maternal PU. The growth comparisons showed that the hybrids had significant growth advantages over maternal PU. Based on karyotype patterns, DNA contents and mitochondrial DNA, the hybrid origin and maternal inheritance of hybrid offspring were further confirmed. According to the sequence variations identified from the genome sequences of the two catfish species, one species-specific marker was developed to distinguish the PL hybrid offspring and their parents. Therefore, this study provides a successful case for intergeneric hybridization and hybrid superiority, and the PL hybrid shows promise for commercial application, pending further studies into its husbandry, health, and welfare with larger populations of fish.
Collapse
Affiliation(s)
- Minghua Xie
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China;
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.Z.); (Y.G.); (M.L.); (P.Z.); (Z.L.); (L.Z.)
| | - Yulin Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.Z.); (Y.G.); (M.L.); (P.Z.); (Z.L.); (L.Z.)
| | - Yi Gong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.Z.); (Y.G.); (M.L.); (P.Z.); (Z.L.); (L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.Z.); (Y.G.); (M.L.); (P.Z.); (Z.L.); (L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Zhen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.Z.); (Y.G.); (M.L.); (P.Z.); (Z.L.); (L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.Z.); (Y.G.); (M.L.); (P.Z.); (Z.L.); (L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.Z.); (Y.G.); (M.L.); (P.Z.); (Z.L.); (L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianfang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.Z.); (Y.G.); (M.L.); (P.Z.); (Z.L.); (L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongwei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.Z.); (Y.G.); (M.L.); (P.Z.); (Z.L.); (L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Wang H, Su B, Zhang Y, Shang M, Li S, Xing D, Wang J, Bern L, Johnson A, Al-Armanazi J, Hasin T, Hettiarachchi D, Paladines Parrales A, Dilawar H, Bruce TJ, Dunham RA, Wang X. From heterosis to outbreeding depression: genotype-by-environment interaction shifts hybrid fitness in opposite directions. Genetics 2024; 227:iyae090. [PMID: 38809057 DOI: 10.1093/genetics/iyae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024] Open
Abstract
In F1 hybrids, phenotypic values are expected to be near the parental means under additive effects or close to one parent under dominance. However, F1 traits can fall outside the parental range, and outbreeding depression occurs when inferior fitness is observed in hybrids. Another possible outcome is heterosis, a phenomenon that interspecific hybrids or intraspecific crossbred F1s exhibit improved fitness compared to both parental species or strains. As an application of heterosis, hybrids between channel catfish females and blue catfish males are superior in feed conversion efficiency, carcass yield, and harvestability. Over 20 years of hybrid catfish production in experimental settings and farming practices generated abundant phenotypic data, making it an ideal system to investigate heterosis. In this study, we characterized fitness in terms of growth and survival longitudinally, revealing environment-dependent heterosis. In ponds, hybrids outgrow both parents due to an extra rapid growth phase of 2-4 months in year 2. This bimodal growth pattern is unique to F1 hybrids in pond culture environments only. In sharp contrast, the same genetic types cultured in tanks display outbreeding depression, where hybrids perform poorly, while channel catfish demonstrate superiority in growth throughout development. Our findings represent the first example, known to the authors, of opposite fitness shifts in response to environmental changes in interspecific vertebrate hybrids, suggesting a broader fitness landscape for F1 hybrids. Future genomic studies based on this experiment will help understand genome-environment interaction in shaping the F1 progeny fitness in the scenario of environment-dependent heterosis and outbreeding depression.
Collapse
Affiliation(s)
- Haolong Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL 36849, USA
| | - Baofeng Su
- Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL 36849, USA
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ying Zhang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL 36849, USA
| | - Mei Shang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Shangjia Li
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - De Xing
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jinhai Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Logan Bern
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Andrew Johnson
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jacob Al-Armanazi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Tasnuba Hasin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Darshika Hettiarachchi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Abel Paladines Parrales
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Hamza Dilawar
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Timothy J Bruce
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Rex A Dunham
- Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL 36849, USA
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL 36849, USA
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
4
|
Schwartz LC, González VL, Strong EE, Truebano M, Hilbish TJ. Transgressive gene expression and expression plasticity under thermal stress in a stable hybrid zone. Mol Ecol 2024; 33:e17333. [PMID: 38597343 DOI: 10.1111/mec.17333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Interspecific hybridization can lead to myriad outcomes, including transgressive phenotypes in which the hybrids are more fit than either parent species. Such hybrids may display important traits in the context of climate change, able to respond to novel environmental conditions not previously experienced by the parent populations. While this has been evaluated in an agricultural context, the role of transgressive hybrids under changing conditions in the wild remains largely unexplored; this is especially true regarding transgressive gene expression. Using the blue mussel species complex (genus Mytilus) as a model system, we investigated the effects of hybridization on temperature induced gene expression plasticity by comparing expression profiles in parental species and their hybrids following a 2-week thermal challenge. Hybrid expression plasticity was most often like one parent or the other (50%). However, a large fraction of genes (26%) showed transgressive expression plasticity (i.e. the change in gene expression was either greater or lesser than that of both parent species), while only 2% were intermediately plastic in hybrids. Despite their close phylogenetic relationship, there was limited overlap in the differentially expressed genes responding to temperature, indicating interspecific differences in the responses to high temperature in which responses from hybrids are distinct from both parent species. We also identified differentially expressed long non-coding RNAs (lncRNAs), which we suggest may contribute to species-specific differences in thermal tolerance. Our findings provide important insight into the impact of hybridization on gene expression under warming. We propose transgressive hybrids may play an important role in population persistence under future warming conditions.
Collapse
Affiliation(s)
- Lindsey C Schwartz
- Department of Biological Sciences, The University of South Carolina, Columbia, South Carolina, USA
- Department of Invertebrate Zoology, Smithsonian National Museum of Natural History, Washington, District of Columbia, USA
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Vanessa L González
- Informatics and Data Science Center, Smithsonian National Museum of Natural History, Washington, District of Columbia, USA
| | - Ellen E Strong
- Department of Invertebrate Zoology, Smithsonian National Museum of Natural History, Washington, District of Columbia, USA
| | - Manuela Truebano
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Thomas J Hilbish
- Department of Biological Sciences, The University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
5
|
Wang H, Su B, Zhang Y, Shang M, Wang J, Johnson A, Dilawar H, Bruce TJ, Dunham RA, Wang X. Transcriptome analysis revealed potential mechanisms of channel catfish growth advantage over blue catfish in a tank culture environment. Front Genet 2024; 15:1341555. [PMID: 38742167 PMCID: PMC11089159 DOI: 10.3389/fgene.2024.1341555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/27/2024] [Indexed: 05/16/2024] Open
Abstract
Channel catfish (Ictalurus punctatus) and blue catfish (Ictalurus furcatus) are two economically important freshwater aquaculture species in the United States, with channel catfish contributing to nearly half of the country's aquaculture production. While differences in economic traits such as growth rate and disease resistance have been noted, the extent of transcriptomic variance across various tissues between these species remains largely unexplored. The hybridization of female channel catfish with male blue catfish has led to the development of superior hybrid catfish breeds that exhibit enhanced growth rates and improved disease resistance, which dominate more than half of the total US catfish production. While hybrid catfish have significant growth advantages in earthen ponds, channel catfish were reported to grow faster in tank culture environments. In this study, we confirmed channel fish's superiority in growth over blue catfish in 60-L tanks at 10.8 months of age (30.3 g and 11.6 g in this study, respectively; p < 0.001). In addition, we conducted RNA sequencing experiments and established transcriptomic resources for the heart, liver, intestine, mucus, and muscle of both species. The number of expressed genes varied across tissues, ranging from 5,036 in the muscle to over 20,000 in the mucus. Gene Ontology analysis has revealed the functional specificity of differentially expressed genes within their respective tissues, with significant pathway enrichment in metabolic pathways, immune activity, and stress responses. Noteworthy tissue-specific marker genes, including lrrc10, fabp2, myog, pth1a, hspa9, cyp21a2, agt, and ngtb, have been identified. This transcriptome resource is poised to support future investigations into the molecular mechanisms underlying environment-dependent heterosis and advance genetic breeding efforts of hybrid catfish.
Collapse
Affiliation(s)
- Haolong Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, United States
| | - Baofeng Su
- Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, United States
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Ying Zhang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, United States
| | - Mei Shang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Jinhai Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Andrew Johnson
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Hamza Dilawar
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Timothy J. Bruce
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Rex A. Dunham
- Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, United States
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, United States
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Auburn University Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, United States
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| |
Collapse
|
6
|
Schneemann H, Munzur AD, Thompson KA, Welch JJ. The diverse effects of phenotypic dominance on hybrid fitness. Evolution 2022; 76:2846-2863. [PMID: 36221216 PMCID: PMC10092378 DOI: 10.1111/evo.14645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/14/2022] [Indexed: 01/22/2023]
Abstract
When divergent populations interbreed, their alleles are brought together in hybrids. In the initial F1 cross, most divergent loci are heterozygous. Therefore, F1 fitness can be influenced by dominance effects that could not have been selected to function well together. We present a systematic study of these F1 dominance effects by introducing variable phenotypic dominance into Fisher's geometric model. We show that dominance often reduces hybrid fitness, which can generate optimal outbreeding followed by a steady decline in F1 fitness, as is often observed. We also show that "lucky" beneficial effects sometimes arise by chance, which might be important when hybrids can access novel environments. We then show that dominance can lead to violations of Haldane's Rule (reduced fitness of the heterogametic F1) but strengthens Darwin's Corollary (F1 fitness differences between cross directions). Taken together, results show that the effects of dominance on hybrid fitness can be surprisingly difficult to isolate, because they often resemble the effects of uniparental inheritance or expression. Nevertheless, we identify a pattern of environment-dependent heterosis that only dominance can explain, and for which there is some suggestive evidence. Our results also show how existing data set upper bounds on the size of dominance effects. These bounds could explain why additive models often provide good predictions for later-generation recombinant hybrids, even when dominance qualitatively changes outcomes for the F1.
Collapse
Affiliation(s)
- Hilde Schneemann
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, UK
| | - Aslı D Munzur
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Ken A Thompson
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, Canada.,Current address: Department of Biology, Stanford University & Department of Plant Biology, Carnegie Institution for Science, Stanford, USA
| | - John J Welch
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, UK
| |
Collapse
|
7
|
Transcriptome and Genome Analyses Applied to Aquaculture Research. BIOLOGY 2022; 11:biology11091312. [PMID: 36138791 PMCID: PMC9495693 DOI: 10.3390/biology11091312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022]
|
8
|
Wang H, Montague HR, Hess HN, Zhang Y, Aguilar GL, Dunham RA, Butts IAE, Wang X. Transcriptome Analysis Reveals Key Gene Expression Changes in Blue Catfish Sperm in Response to Cryopreservation. Int J Mol Sci 2022; 23:ijms23147618. [PMID: 35886966 PMCID: PMC9316979 DOI: 10.3390/ijms23147618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023] Open
Abstract
The hybrids of female channel catfish (Ictalurus punctatus) and male blue catfish (I. furcatus) account for >50% of US catfish production due to superior growth, feed conversion, and disease resistance compared to both parental species. However, these hybrids can rarely be naturally spawned. Sperm collection is a lethal procedure, and sperm samples are now cryopreserved for fertilization needs. Previous studies showed that variation in sperm quality causes variable embryo hatch rates, which is the limiting factor in hybrid catfish breeding. Biomarkers as indicators for sperm quality and reproductive success are currently lacking. To address this, we investigated expression changes caused by cryopreservation using transcriptome profiles of fresh and cryopreserved sperm. Sperm quality measurements revealed that cryopreservation significantly increased oxidative stress levels and DNA fragmentation, and reduced sperm kinematic parameters. The present RNA-seq study identified 849 upregulated genes after cryopreservation, including members of all five complexes in the mitochondrial electron transport chain, suggesting a boost in oxidative phosphorylation activities, which often lead to excessive production of reactive oxygen species (ROS) associated with cell death. Interestingly, functional enrichment analyses revealed compensatory changes in gene expression after cryopreservation to offset detrimental effects of ultra-cold storage: MnSOD was induced to control ROS production; chaperones and ubiquitin ligases were upregulated to correct misfolded proteins or direct them to degradation; negative regulators of apoptosis, amide biosynthesis, and cilium-related functions were also enriched. Our study provides insight into underlying molecular mechanisms of sperm cryoinjury and lays a foundation to further explore molecular biomarkers on cryo-survival and gamete quality.
Collapse
Affiliation(s)
- Haolong Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (H.W.); (Y.Z.)
- Alabama Agricultural Experiment Station, Auburn, AL 36849, USA; (H.R.M.); (H.N.H.); (G.L.A.); (R.A.D.)
| | - Helen R. Montague
- Alabama Agricultural Experiment Station, Auburn, AL 36849, USA; (H.R.M.); (H.N.H.); (G.L.A.); (R.A.D.)
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Hana N. Hess
- Alabama Agricultural Experiment Station, Auburn, AL 36849, USA; (H.R.M.); (H.N.H.); (G.L.A.); (R.A.D.)
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ying Zhang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (H.W.); (Y.Z.)
- Alabama Agricultural Experiment Station, Auburn, AL 36849, USA; (H.R.M.); (H.N.H.); (G.L.A.); (R.A.D.)
| | - Gavin L. Aguilar
- Alabama Agricultural Experiment Station, Auburn, AL 36849, USA; (H.R.M.); (H.N.H.); (G.L.A.); (R.A.D.)
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Rex A. Dunham
- Alabama Agricultural Experiment Station, Auburn, AL 36849, USA; (H.R.M.); (H.N.H.); (G.L.A.); (R.A.D.)
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ian A. E. Butts
- Alabama Agricultural Experiment Station, Auburn, AL 36849, USA; (H.R.M.); (H.N.H.); (G.L.A.); (R.A.D.)
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
- Correspondence: (I.A.E.B.); (X.W.); Tel.: +1-344-728-7745 (I.A.E.B.); +1-344-844-7511 (X.W.)
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (H.W.); (Y.Z.)
- Alabama Agricultural Experiment Station, Auburn, AL 36849, USA; (H.R.M.); (H.N.H.); (G.L.A.); (R.A.D.)
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
- Correspondence: (I.A.E.B.); (X.W.); Tel.: +1-344-728-7745 (I.A.E.B.); +1-344-844-7511 (X.W.)
| |
Collapse
|
9
|
Wang H, Su B, Butts IAE, Dunham RA, Wang X. Chromosome-level assembly and annotation of the blue catfish Ictalurus furcatus, an aquaculture species for hybrid catfish reproduction, epigenetics, and heterosis studies. Gigascience 2022; 11:6636942. [PMID: 35809049 PMCID: PMC9270728 DOI: 10.1093/gigascience/giac070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/24/2022] [Accepted: 06/16/2022] [Indexed: 12/17/2022] Open
Abstract
Background The blue catfish is of great value in aquaculture and recreational fisheries. The F1 hybrids of female channel catfish (Ictalurus punctatus) × male blue catfish (Ictalurusfurcatus) have been the primary driver of US catfish production in recent years because of superior growth, survival, and carcass yield. The channel–blue hybrid also provides an excellent model to investigate molecular mechanisms of environment-dependent heterosis. However, transcriptome and methylome studies suffered from low alignment rates to the channel catfish genome due to divergence, and the genome resources for blue catfish are not publicly available. Results The blue catfish genome assembly is 841.86 Mbp in length with excellent continuity (8.6 Mbp contig N50, 28.2 Mbp scaffold N50) and completeness (98.6% Eukaryota and 97.0% Actinopterygii BUSCO). A total of 30,971 protein-coding genes were predicted, of which 21,781 were supported by RNA sequencing evidence. Phylogenomic analyses revealed that it diverged from channel catfish approximately 9 million years ago with 15.7 million fixed nucleotide differences. The within-species single-nucleotide polymorphism (SNP) density is 0.32% between the most aquaculturally important blue catfish strains (D&B and Rio Grande). Gene family analysis discovered significant expansion of immune-related families in the blue catfish lineage, which may contribute to disease resistance in blue catfish. Conclusions We reported the first high-quality, chromosome-level assembly of the blue catfish genome, which provides the necessary genomic tool kit for transcriptome and methylome analysis, SNP discovery and marker-assisted selection, gene editing and genome engineering, and reproductive enhancement of the blue catfish and hybrid catfish.
Collapse
Affiliation(s)
- Haolong Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.,Alabama Agricultural Experiment Station, Auburn, AL 36849, USA
| | - Baofeng Su
- Alabama Agricultural Experiment Station, Auburn, AL 36849, USA.,School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ian A E Butts
- Alabama Agricultural Experiment Station, Auburn, AL 36849, USA.,School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Rex A Dunham
- Alabama Agricultural Experiment Station, Auburn, AL 36849, USA.,School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.,Alabama Agricultural Experiment Station, Auburn, AL 36849, USA.,HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|