1
|
Li J, Zhang S, Tang Y, Wang J, Gu W, Wei Y, Tang F, Peng X, Liu J, Wei Y, Zhang S, Gu L, Li Y, Tang F. A novel method for simultaneously measuring boronophenylalanine uptake in brain tumor cells and number of cells using inductively coupled plasma atomic emission spectroscopy. Appl Radiat Isot 2024; 205:111184. [PMID: 38215645 DOI: 10.1016/j.apradiso.2024.111184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/16/2023] [Accepted: 01/06/2024] [Indexed: 01/14/2024]
Abstract
Boron neutron capture therapy (BNCT) combines neutron irradiation with boron compounds that are selectively uptaken by tumor cells. Boronophenylalanine (BPA) is a boron compound used to treat malignant brain tumors. The determination of boron concentration in cells is of great relevance to the field of BNCT. This study was designed to develop a novel method for simultaneously measuring the uptake of BPA by U87 and U251 cells (two brain tumor cell lines) and number of cells using inductively coupled plasma atomic emission spectroscopy (ICP-AES). The results revealed a linear correlation between phosphorus intensity and the numbers of U87 and U251 cells, with correlation coefficients (R2) of 0.9995 and 0.9994, respectively. High accuracy and reliability of phosphorus concentration standard curve were also found. Using this new method, we found that BPA had no significant effect on phosphorus concentration in either U87 or U251 cells. However, BPA increased the boron concentration in U87 and U251 cells in a concentration-dependent manner, with the boron concentration in U87 cells being higher than that in U251 cells. In both U87 and U251 cells, boron was mainly distributed in the cytoplasm and nucleus, accounting for 85% and 13% of the total boron uptake by U87 cells and 86% and 11% of the total boron uptake by U251 cells, respectively. In the U87 and U251 cell-derived xenograft (CDX) animal model, tumor exhibited higher boron concentration values than blood, heart, liver, lung, and brain, with a tumor/blood ratio of 2.87 for U87 cells and 3.11 for U251 cells, respectively. These results suggest that the phosphorus concentration in U87 and U251 cells can represent the number of cells and BPA is easily uptaken by tumor cells as well as in tumor tissue.
Collapse
Affiliation(s)
- Jialu Li
- School of Nursing, Lanzhou University, Lanzhou, China
| | - Shining Zhang
- Key Laboratory of Digestive System Tumor of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yu Tang
- Clinical Medicine Department, Xinxiang Medical University, Xinxiang, China
| | - Jianrong Wang
- Key Laboratory of Digestive System Tumor of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Wenjiao Gu
- Key Laboratory of Digestive System Tumor of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yujie Wei
- Key Laboratory of Digestive System Tumor of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Fenxia Tang
- Key Laboratory of Digestive System Tumor of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaohuan Peng
- Key Laboratory of Digestive System Tumor of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiangyan Liu
- Nuclear Medicine Department, Lanzhou University Second Hospital, Lanzhou, China
| | - Yucai Wei
- School of Nursing, Lanzhou University, Lanzhou, China
| | - Shixu Zhang
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
| | - Long Gu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China; South-east Institute of Lanzhou University, Putian, China.
| | - Yumin Li
- Key Laboratory of Digestive System Tumor of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China; South-east Institute of Lanzhou University, Putian, China.
| | - Futian Tang
- Key Laboratory of Digestive System Tumor of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China; South-east Institute of Lanzhou University, Putian, China.
| |
Collapse
|
2
|
Zavestovskaya IN, Kasatova AI, Kasatov DA, Babkova JS, Zelepukin IV, Kuzmina KS, Tikhonowski GV, Pastukhov AI, Aiyyzhy KO, Barmina EV, Popov AA, Razumov IA, Zavjalov EL, Grigoryeva MS, Klimentov SM, Ryabov VA, Deyev SM, Taskaev SY, Kabashin AV. Laser-Synthesized Elemental Boron Nanoparticles for Efficient Boron Neutron Capture Therapy. Int J Mol Sci 2023; 24:17088. [PMID: 38069412 PMCID: PMC10707216 DOI: 10.3390/ijms242317088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is one of the most appealing radiotherapy modalities, whose localization can be further improved by the employment of boron-containing nanoformulations, but the fabrication of biologically friendly, water-dispersible nanoparticles (NPs) with high boron content and favorable physicochemical characteristics still presents a great challenge. Here, we explore the use of elemental boron (B) NPs (BNPs) fabricated using the methods of pulsed laser ablation in liquids as sensitizers of BNCT. Depending on the conditions of laser-ablative synthesis, the used NPs were amorphous (a-BNPs) or partially crystallized (pc-BNPs) with a mean size of 20 nm or 50 nm, respectively. Both types of BNPs were functionalized with polyethylene glycol polymer to improve colloidal stability and biocompatibility. The NPs did not initiate any toxicity effects up to concentrations of 500 µg/mL, based on the results of MTT and clonogenic assay tests. The cells with BNPs incubated at a 10B concentration of 40 µg/mL were then irradiated with a thermal neutron beam for 30 min. We found that the presence of BNPs led to a radical enhancement in cancer cell death, namely a drop in colony forming capacity of SW-620 cells down to 12.6% and 1.6% for a-BNPs and pc-BNPs, respectively, while the relevant colony-forming capacity for U87 cells dropped down to 17%. The effect of cell irradiation by neutron beam uniquely was negligible under these conditions. Finally, to estimate the dose and regimes of irradiation for future BNCT in vivo tests, we studied the biodistribution of boron under intratumoral administration of BNPs in immunodeficient SCID mice and recorded excellent retention of boron in tumors. The obtained data unambiguously evidenced the effect of a neutron therapy enhancement, which can be attributed to efficient BNP-mediated generation of α-particles.
Collapse
Affiliation(s)
- Irina N. Zavestovskaya
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russia; (M.S.G.); (V.A.R.)
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI, Moscow 115409, Russia (I.V.Z.); (G.V.T.); (A.A.P.); (S.M.K.); (S.M.D.)
| | - Anna I. Kasatova
- Laboratory of BNCT, Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (A.I.K.); (D.A.K.); (K.S.K.); (S.Y.T.)
| | - Dmitry A. Kasatov
- Laboratory of BNCT, Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (A.I.K.); (D.A.K.); (K.S.K.); (S.Y.T.)
| | - Julia S. Babkova
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI, Moscow 115409, Russia (I.V.Z.); (G.V.T.); (A.A.P.); (S.M.K.); (S.M.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Ivan V. Zelepukin
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI, Moscow 115409, Russia (I.V.Z.); (G.V.T.); (A.A.P.); (S.M.K.); (S.M.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Ksenya S. Kuzmina
- Laboratory of BNCT, Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (A.I.K.); (D.A.K.); (K.S.K.); (S.Y.T.)
| | - Gleb V. Tikhonowski
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI, Moscow 115409, Russia (I.V.Z.); (G.V.T.); (A.A.P.); (S.M.K.); (S.M.D.)
| | - Andrei I. Pastukhov
- LP3, Aix-Marseille University, CNRS, 13288 Marseille, France; (A.I.P.); (A.V.K.)
| | - Kuder O. Aiyyzhy
- A. M. Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia; (K.O.A.); (E.V.B.)
| | - Ekaterina V. Barmina
- A. M. Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia; (K.O.A.); (E.V.B.)
| | - Anton A. Popov
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI, Moscow 115409, Russia (I.V.Z.); (G.V.T.); (A.A.P.); (S.M.K.); (S.M.D.)
| | - Ivan A. Razumov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (I.A.R.); (E.L.Z.)
| | - Evgenii L. Zavjalov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (I.A.R.); (E.L.Z.)
| | - Maria S. Grigoryeva
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russia; (M.S.G.); (V.A.R.)
| | - Sergey M. Klimentov
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI, Moscow 115409, Russia (I.V.Z.); (G.V.T.); (A.A.P.); (S.M.K.); (S.M.D.)
| | - Vladimir A. Ryabov
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russia; (M.S.G.); (V.A.R.)
| | - Sergey M. Deyev
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI, Moscow 115409, Russia (I.V.Z.); (G.V.T.); (A.A.P.); (S.M.K.); (S.M.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
- Laboratory of Molecular Pharmacology, Institute of Molecular Theranostics, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
- “Biomarker” Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Sergey Yu. Taskaev
- Laboratory of BNCT, Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (A.I.K.); (D.A.K.); (K.S.K.); (S.Y.T.)
| | - Andrei V. Kabashin
- LP3, Aix-Marseille University, CNRS, 13288 Marseille, France; (A.I.P.); (A.V.K.)
| |
Collapse
|
3
|
Sycheva T, Berendeev E, Verkhovod G, Taskaev S. A single coned Poly-Biz moderator designed for animal irradiation in boron neutron capture therapy. Appl Radiat Isot 2023; 198:110818. [PMID: 37196433 DOI: 10.1016/j.apradiso.2023.110818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/06/2023] [Accepted: 04/11/2023] [Indexed: 05/19/2023]
Abstract
BNCT is considered to be a promising method for the treatment of malignant tumors, which ensures the selective destruction of malignant tumor cells by accumulating non-radioactive atomic boron-10 nuclei in them and subsequent irradiation with neutrons. As a result of the absorption of a neutron by boron, a nuclear reaction occurs with the release of energy in a cell containing boron, which leads to its death. To date, two drugs for targeted delivery of boron, boronophenylalanine and sodium borocaptate, have been developed, which ensures selective accumulation of boron in a number of tumors, and a number of charged particle accelerators with neutron-generating targets and with neutron beam shaping assemblies have been developed providing the quality of the neutron beam required for therapy. The paper presents a critical analysis of the methods used to form a therapeutic neutron beam and proposes a new concept of a neutron beam shaping assembly, supported by the results of numerical simulation validated by in-phantom measurements.
Collapse
Affiliation(s)
- Tatiana Sycheva
- Budker Institute of Nuclear Physics, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - Evgenii Berendeev
- Budker Institute of Nuclear Physics, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - Gleb Verkhovod
- Budker Institute of Nuclear Physics, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - Sergey Taskaev
- Budker Institute of Nuclear Physics, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
4
|
Kanygin V, Zaboronok A, Kichigin A, Petrova E, Guselnikova T, Kozlov A, Lukichev D, Mathis BJ, Taskaev S. Gadolinium Neutron Capture Therapy for Cats and Dogs with Spontaneous Tumors Using Gd-DTPA. Vet Sci 2023; 10:vetsci10040274. [PMID: 37104429 PMCID: PMC10142813 DOI: 10.3390/vetsci10040274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
We conducted a clinical veterinary study on neutron capture therapy (NCT) at a neutron-producing accelerator with seven incurable pets with spontaneous tumors and gadolinium as a neutron capture agent (gadolinium neutron capture therapy, or GdNCT). Gadolinium-containing dimeglumine gadopentetate, or Gd-DTPA (Magnevist®, 0.6 mL/kg b.w.), was used. We observed mild and reversible toxicity related to the treatment. However, no significant tumor regression in response to the treatment was observed. In most cases, there was continued tumor growth. Overall clinical improvement after treatment was only temporary. The use of Gd-DTPA for NCT had no significant effects on the life expectancy and quality of life of animals with spontaneous tumors. Further experiments using more advanced gadolinium compounds are needed to improve the effect of GdNCT so that it can become an alternative to boron neutron capture therapy. Such studies are also necessary for further NCT implementation in clinical practice as well as in veterinary medicine.
Collapse
Affiliation(s)
- Vladimir Kanygin
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, ave. Lavrentiev, 11, 630090 Novosibirsk, Russia
- Laboratory of Nuclear and Innovative Medicine, Department of Physics, Novosibirsk State University, Pirogov str., 1, 630090 Novosibirsk, Russia
| | - Alexander Zaboronok
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8575, Ibaraki, Japan
| | - Aleksandr Kichigin
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, ave. Lavrentiev, 11, 630090 Novosibirsk, Russia
- Laboratory of Nuclear and Innovative Medicine, Department of Physics, Novosibirsk State University, Pirogov str., 1, 630090 Novosibirsk, Russia
| | - Elena Petrova
- Veterinary Clinic “Best”, Frunze str., 57, 630005 Novosibirsk, Russia
| | - Tatyana Guselnikova
- Laboratory of Nuclear and Innovative Medicine, Department of Physics, Novosibirsk State University, Pirogov str., 1, 630090 Novosibirsk, Russia
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, ave. Lavrentiev, 3, 630090 Novosibirsk, Russia
| | - Andrey Kozlov
- Clinical Hospital “Avicenna”, Uritskogo str., 2, 630007 Novosibirsk, Russia
| | - Dmitriy Lukichev
- Laboratory of Nuclear and Innovative Medicine, Department of Physics, Novosibirsk State University, Pirogov str., 1, 630090 Novosibirsk, Russia
| | - Bryan J. Mathis
- International Medical Center, University of Tsukuba Hospital, Amakubo 2-1-1, Tsukuba 305-8576, Ibaraki, Japan
| | - Sergey Taskaev
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, ave. Lavrentiev, 11, 630090 Novosibirsk, Russia
- Laboratory of Nuclear and Innovative Medicine, Department of Physics, Novosibirsk State University, Pirogov str., 1, 630090 Novosibirsk, Russia
| |
Collapse
|
5
|
Bikchurina M, Bykov T, Byambatseren E, Ibrahem I, Kasatov D, Kolesnikov I, Konovalova V, Koshkarev A, Makarov A, Ostreinov G, Savinov S, Sokolova E, Sorokin I, Shchudlo I, Sycheva T, Verkhovod G, Taskaev S. VITA high flux neutron source for various applications. JOURNAL OF NEUTRON RESEARCH 2022. [DOI: 10.3233/jnr-220020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A high flux neutron source based on a vacuum-insulated tandem accelerator (VITA) and a lithium target has been proposed and developed at the Budker Institute of Nuclear Physics in Novosibirsk, Russia. We describe VITA which provides a dc proton/deuteron beam with an energy within a range of 0.6–2.3 MeV with a current from 1 nA to 10 mA. VITA is also capable of producing α-particles through the 7Li(p,α)α and 11B(p,α) α α reactions, 478 keV photons through the 7Li(p,p ′ γ)7Li reaction and positrons through the 19F(p,e+e−)16O reaction. We present several applications of this source: boron neutron capture therapy, nuclear cross sections determination, lithium target study, radiation blistering of metals during proton implantation and the radiation testing of promising materials.
Collapse
Affiliation(s)
- Marina Bikchurina
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Tymofey Bykov
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | | | - Dmitrii Kasatov
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Iaroslav Kolesnikov
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | - Alexey Koshkarev
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Aleksandr Makarov
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Georgii Ostreinov
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Sergey Savinov
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Evgeniia Sokolova
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Igor Sorokin
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Ivan Shchudlo
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Tatiana Sycheva
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Gleb Verkhovod
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Sergey Taskaev
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
6
|
Kondo N, Masutani M, Imamichi S, Matsumoto Y, Nakai K. Strategies for Preclinical Studies Evaluating the Biological Effects of an Accelerator-Based Boron Neutron Capture Therapy System. Cancer Biother Radiopharm 2022; 38:173-183. [PMID: 36154293 DOI: 10.1089/cbr.2022.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This review discusses the strategies of preclinical studies intended for accelerator-based (AB)-boron neutron capture therapy (BNCT) clinical trials, which were presented at the National Cancer Institute (NCI) Workshop on Neutron Capture Therapy held from April 20 to 22, 2022. Clinical studies of BNCT have been conducted worldwide using reactor neutron sources, with most targeting malignant brain tumors, melanoma, or head and neck cancer. Recently, small accelerator-based neutron sources that can be installed in hospitals have been developed. AB-BNCT clinical trials for recurrent malignant glioma, head and neck cancers, high-grade meningioma, melanoma, and angiosarcoma have all been conducted in Japan. The necessary methods, equipment, and facilities for preclinical studies to evaluate the biological effects of AB-BNCT systems in terms of safety and efficacy are described, with reference to two examples from Japan. The first is the National Cancer Center, which is equipped with a vertical downward neutron beam, and the other is the University of Tsukuba, which has a horizontal neutron beam. The preclinical studies discussed include cell-based assays to evaluate cytotoxicity and genotoxicity, in vivo cytotoxicity and efficacy of BNCT, and radioactivation measurements.
Collapse
Affiliation(s)
- Natsuko Kondo
- Particle Radiation Oncology Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Asashiro-Nishi, Osaka, Japan
| | - Mitsuko Masutani
- Department of Molecular and Genomic Biomedicine School of Medicine, Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Central Radioisotope Division, National Cancer Center Research Institute, Tokyo, Japan.,Division of BNCT, EPOC, National Cancer Center, Tokyo, Japan
| | - Shoji Imamichi
- Department of Molecular and Genomic Biomedicine School of Medicine, Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Central Radioisotope Division, National Cancer Center Research Institute, Tokyo, Japan.,Division of BNCT, EPOC, National Cancer Center, Tokyo, Japan
| | - Yoshitaka Matsumoto
- Department of Radiation Oncology, Proton Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kei Nakai
- Department of Radiation Oncology, Proton Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
7
|
Tang F, Wei Y, Zhang S, Wang J, Gu W, Tang F, Peng X, Wei Y, Liu J, Chen W, Zhang S, Gu L, Li Y. Evaluation of Pharmacokinetics of Boronophenylalanine and Its Uptakes in Gastric Cancer. Front Oncol 2022; 12:925671. [PMID: 35903711 PMCID: PMC9314552 DOI: 10.3389/fonc.2022.925671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022] Open
Abstract
Boron neutron capture therapy (BNCT), a cellular-level particle radiation therapy, combines boron compounds selectively delivered to tumor tissue with neutron irradiation. Boronophenylalanine (BPA) is a boron compound widely used in malignant melanoma, malignant brain tumors, and recurrent head and neck cancer. However, neither basic nor clinical research was reported for the treatment of gastric cancer using BPA. Selective distribution of boron in tumors rather than that in blood or normal tissue prior to neutron irradiation is required for the successful treatment of BNCT. This study evaluated the pharmacokinetics and safety of 10B-labeled BPA (10B-BPA, abbreviated as BPA) and its uptakes in gastric cancer. Pharmacokinetics and safety were evaluated in Sprague–Dawley (SD) rats intravenously injected with BPA. The uptakes of boron in gastric cancer cell line MKN45 and in cell-derived xenografts (CDX) and patient-derived xenografts (PDX) animal models were measured. The results showed that the boron concentration in the blood of rats decreased fast in the first 30 min followed by a steady decrease following the observation time, having a half-life of 44.11 ± 8.90 min and an AUC-last of 815.05 ± 62.09 min×μg/ml. The distribution of boron in different tissues (heart, liver, lung, stomach, and small intestine) of rats revealed a similar pattern in blood except for that in the brain, kidney, and bladder. In MKN45 cells, boron concentration increased in a time- and concentration-dependent manner. In both CDX and PDX animal models, the boron is preferentially distributed in tumor tissue rather than in blood or normal tissues. In addition, BPA had no significant adverse effects in rats. Taken together, the results suggested that BPA revealed a fast decrease in boron concentration in rats and is more likely to distribute in tumor cells and tissue.
Collapse
Affiliation(s)
- Futian Tang
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
- South-East Institute of Lanzhou University, Putian, China
| | - Yujie Wei
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
| | - Shining Zhang
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
| | - Jianrong Wang
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
| | - Wenjiao Gu
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
| | - Fenxia Tang
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaohuan Peng
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
| | - Yucai Wei
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiangyan Liu
- Nuclear Medicine Department, Lanzhou University Second Hospital, Lanzhou, China
| | - Weiqiang Chen
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
- Department of Radiotherapy Technology, Lanhai Nuclear Medicine Research Center, Putian, China
| | - Shixu Zhang
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
| | - Long Gu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
- *Correspondence: Yumin Li, ; Long Gu,
| | - Yumin Li
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
- South-East Institute of Lanzhou University, Putian, China
- *Correspondence: Yumin Li, ; Long Gu,
| |
Collapse
|