1
|
Wang Z, Burigotto M, Ghetti S, Vaillant F, Tan T, Capaldo BD, Palmieri M, Hirokawa Y, Tai L, Simpson DS, Chang C, Huang AS, Lieschke E, Diepstraten ST, Kaloni D, Riffkin C, Huang DC, Li Wai Suen CS, Garnham AL, Gibbs P, Visvader JE, Sieber OM, Herold MJ, Fava LL, Kelly GL, Strasser A. Loss-of-Function but Not Gain-of-Function Properties of Mutant TP53 Are Critical for the Proliferation, Survival, and Metastasis of a Broad Range of Cancer Cells. Cancer Discov 2024; 14:362-379. [PMID: 37877779 PMCID: PMC10850947 DOI: 10.1158/2159-8290.cd-23-0402] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023]
Abstract
Mutations in the tumor suppressor TP53 cause cancer and impart poor chemotherapeutic responses, reportedly through loss-of-function, dominant-negative effects and gain-of-function (GOF) activities. The relative contributions of these attributes is unknown. We found that removal of 12 different TP53 mutants with reported GOFs by CRISPR/Cas9 did not impact proliferation and response to chemotherapeutics of 15 human cancer cell lines and colon cancer-derived organoids in culture. Moreover, removal of mutant TP53/TRP53 did not impair growth or metastasis of human cancers in immune-deficient mice or growth of murine cancers in immune-competent mice. DepMap mining revealed that removal of 158 different TP53 mutants had no impact on the growth of 391 human cancer cell lines. In contrast, CRISPR-mediated restoration of wild-type TP53 extinguished the growth of human cancer cells in vitro. These findings demonstrate that LOF but not GOF effects of mutant TP53/TRP53 are critical to sustain expansion of many tumor types. SIGNIFICANCE This study provides evidence that removal of mutant TP53, thereby deleting its reported GOF activities, does not impact the survival, proliferation, metastasis, or chemotherapy responses of cancer cells. Thus, approaches that abrogate expression of mutant TP53 or target its reported GOF activities are unlikely to exert therapeutic impact in cancer. See related commentary by Lane, p. 211 . This article is featured in Selected Articles from This Issue, p. 201.
Collapse
Affiliation(s)
- Zilu Wang
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Matteo Burigotto
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Trento, Italy
| | - Sabrina Ghetti
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Trento, Italy
| | - François Vaillant
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Tao Tan
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Bianca D. Capaldo
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Michelle Palmieri
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Yumiko Hirokawa
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Lin Tai
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
| | - Daniel S. Simpson
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Catherine Chang
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
| | - Allan Shuai Huang
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Elizabeth Lieschke
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Sarah T. Diepstraten
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Deeksha Kaloni
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Chris Riffkin
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
| | - David C.S. Huang
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Connie S.N. Li Wai Suen
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Alexandra L. Garnham
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Peter Gibbs
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Jane E. Visvader
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Oliver M. Sieber
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Marco J. Herold
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Luca L. Fava
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Trento, Italy
| | - Gemma L. Kelly
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|