1
|
Gupta S, Silveira DA, Piedade GP, Ostrowski MP, Mombach JCM, Hashimoto RF. A dynamic Boolean network reveals that the BMI1 and MALAT1 axis is associated with drug resistance by limiting miR-145-5p in non-small cell lung cancer. Noncoding RNA Res 2024; 9:185-193. [PMID: 38125755 PMCID: PMC10730431 DOI: 10.1016/j.ncrna.2023.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 12/23/2023] Open
Abstract
Patients with non-small cell lung cancer (NSCLC) are often treated with chemotherapy. Poor clinical response and the onset of chemoresistance limit the anti-tumor benefits of drugs such as cisplatin. According to recent research, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a long non-coding RNA related to cisplatin resistance in NSCLC. Furthermore, MALAT1 targets microRNA-145-5p (miR-145), which activates Krüppel-like factor 4 (KLF4) in associated cell lines. B lymphoma Mo-MLV insertion region 1 homolog (BMI1), on the other hand, inhibits miR-145 expression, which stimulates Specificity protein 1 (Sp1) to trigger the epithelial-mesenchymal transition (EMT) process in pemetrexed-resistant NSCLC cells. The interplay between these molecules in drug resistance is still unclear. Therefore, we propose a dynamic Boolean network that can encapsulate the complexity of these drug-resistant molecules. Using published clinical data for gain or loss-of-function perturbations, our network demonstrates reasonable agreement with experimental observations. We identify four new positive circuits: miR-145/Sp1/MALAT1, BMI1/miR-145/Myc, KLF4/p53/miR-145, and miR-145/Wip1/p38MAPK/p53. Notably, miR-145 emerges as a central player in these regulatory circuits, underscoring its pivotal role in NSCLC drug resistance. Our circuit perturbation analysis further emphasizes the critical involvement of these new circuits in drug resistance for NSCLC. In conclusion, targeting MALAT1 and BMI1 holds promise for overcoming drug resistance, while activating miR-145 represents a potential strategy to significantly reduce drug resistance in NSCLC.
Collapse
Affiliation(s)
- Shantanu Gupta
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, 05508-090, São Paulo, SP, Brazil
| | - Daner A. Silveira
- Children's Cancer Institute, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriel P.S. Piedade
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, 05508-090, São Paulo, SP, Brazil
| | - Miguel P. Ostrowski
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, 05508-090, São Paulo, SP, Brazil
| | - José Carlos M. Mombach
- Departamento de Física, Universidade Federal de Santa Maria, Santa Maria, 97105-900, RS, Brazil
| | - Ronaldo F. Hashimoto
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, 05508-090, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Gupta S, Silveira DA, Hashimoto RF. A Boolean model of the oncogene role of FAM111B in lung adenocarcinoma. Comput Biol Chem 2023; 106:107926. [PMID: 37487252 DOI: 10.1016/j.compbiolchem.2023.107926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/30/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
The ultimate goal of this study is to analyze the gene regulation between FAM111B and p53 in lung adenocarcinoma using Boolean networks. Recent studies have shown that downregulation of FAM111B enhances the G2/M cell cycle checkpoint in the respective cell lines. Upregulation of p53 directly downregulates FAM111B, which is directed to affect cell cycle controllers Cdc25C and Cdk1/CyclinB, thereby controlling G2/M cell cycle arrest. As for apoptosis, down-regulation of FAM111B by p53 directly regulates the BAG3/Bcl-2 axis, which triggers apoptotic cell death. However, the molecular mechanisms involving p53 and FAM111B in G2/M checkpoint regulation are still unknown. Thus, we present a Boolean model of the G2/M checkpoint considering the effect of p53 and FAM111B. Our model indicates that the cell fate between the two cellular phenotypes, arrest, and apoptosis, at the G2/M checkpoint is non-deterministic and is controlled by p53. The model was compared with the experimental data involving gain- or loss-of-function genes and achieved a fair agreement. The model predicts a positive circuit involving p53/FAM111B/BAG3. Our circuit perturbation analysis suggests that this circuit may be essential for controlling cell-fate decisions at the G2/M checkpoint. Our model supports that FAM111B is an engaging target for drug development in lung adenocarcinoma.
Collapse
Affiliation(s)
- Shantanu Gupta
- Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil.
| | - Daner A Silveira
- Children's Cancer Institute, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ronaldo F Hashimoto
- Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil
| |
Collapse
|
3
|
Gupta S, Panda PK, Silveira DA, Ahuja R, Hashimoto RF. Quadra-Stable Dynamics of p53 and PTEN in the DNA Damage Response. Cells 2023; 12:cells12071085. [PMID: 37048159 PMCID: PMC10093226 DOI: 10.3390/cells12071085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Cell fate determination is a complex process that is frequently described as cells traveling on rugged pathways, beginning with DNA damage response (DDR). Tumor protein p53 (p53) and phosphatase and tensin homolog (PTEN) are two critical players in this process. Although both of these proteins are known to be key cell fate regulators, the exact mechanism by which they collaborate in the DDR remains unknown. Thus, we propose a dynamic Boolean network. Our model incorporates experimental data obtained from NSCLC cells and is the first of its kind. Our network's wild-type system shows that DDR activates the G2/M checkpoint, and this triggers a cascade of events, involving p53 and PTEN, that ultimately lead to the four potential phenotypes: cell cycle arrest, senescence, autophagy, and apoptosis (quadra-stable dynamics). The network predictions correspond with the gain-and-loss of function investigations in the additional two cell lines (HeLa and MCF-7). Our findings imply that p53 and PTEN act as molecular switches that activate or deactivate specific pathways to govern cell fate decisions. Thus, our network facilitates the direct investigation of quadruplicate cell fate decisions in DDR. Therefore, we concluded that concurrently controlling PTEN and p53 dynamics may be a viable strategy for enhancing clinical outcomes.
Collapse
Affiliation(s)
- Shantanu Gupta
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden
| | | | - Rajeev Ahuja
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Ronaldo F Hashimoto
- Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil
| |
Collapse
|
4
|
Gupta S, Panda PK, Luo W, Hashimoto RF, Ahuja R. Network analysis reveals that the tumor suppressor lncRNA GAS5 acts as a double-edged sword in response to DNA damage in gastric cancer. Sci Rep 2022; 12:18312. [PMID: 36316351 PMCID: PMC9622883 DOI: 10.1038/s41598-022-21492-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/28/2022] [Indexed: 11/14/2022] Open
Abstract
The lncRNA GAS5 acts as a tumor suppressor and is downregulated in gastric cancer (GC). In contrast, E2F1, an important transcription factor and tumor promoter, directly inhibits miR-34c expression in GC cell lines. Furthermore, in the corresponding GC cell lines, lncRNA GAS5 directly targets E2F1. However, lncRNA GAS5 and miR-34c remain to be studied in conjunction with GC. Here, we present a dynamic Boolean network to classify gene regulation between these two non-coding RNAs (ncRNAs) in GC. This is the first study to show that lncRNA GAS5 can positively regulate miR-34c in GC through a previously unknown molecular pathway coupling lncRNA/miRNA. We compared our network to several in-vivo/in-vitro experiments and obtained an excellent agreement. We revealed that lncRNA GAS5 regulates miR-34c by targeting E2F1. Additionally, we found that lncRNA GAS5, independently of p53, inhibits GC proliferation through the ATM/p38 MAPK signaling pathway. Accordingly, our results support that E2F1 is an engaging target of drug development in tumor growth and aggressive proliferation of GC, and favorable results can be achieved through tumor suppressor lncRNA GAS5/miR-34c axis in GC. Thus, our findings unlock a new avenue for GC treatment in response to DNA damage by these ncRNAs.
Collapse
Affiliation(s)
- Shantanu Gupta
- grid.11899.380000 0004 1937 0722Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, São Paulo, SP 05508-090 Brasil
| | - Pritam Kumar Panda
- grid.8993.b0000 0004 1936 9457Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden
| | - Wei Luo
- grid.8993.b0000 0004 1936 9457Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden
| | - Ronaldo F. Hashimoto
- grid.11899.380000 0004 1937 0722Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, São Paulo, SP 05508-090 Brasil
| | - Rajeev Ahuja
- grid.8993.b0000 0004 1936 9457Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden ,grid.462391.b0000 0004 1769 8011Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001 India
| |
Collapse
|
5
|
Silveira DA, Gupta S, Sinigaglia M, Mombach JCM. The Wnt pathway can stabilize hybrid phenotypes in the epithelial-mesenchymal transition: A logical modeling approach. Comput Biol Chem 2022; 99:107714. [PMID: 35763962 DOI: 10.1016/j.compbiolchem.2022.107714] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
The Wnt pathway is important to regulate a variety of biochemical functions and can contribute to cancer development through its influence on the epithelial-mesenchymal transition (EMT). Multiple circuits have been reported to participate in the regulation of the Wnt signaling, however, the way these circuits coordinately regulate this signaling is still unclear. Moreover, the mechanisms responsible for the appearance of hybrid phenotypes (cells presenting both E and M features) are not well determined. The hybrid phenotype can present much higher metastatic potential than the mesenchymal phenotype. In this study, we propose a Boolean model of the Wnt pathway signaling contemplating recent published biochemical information on hepatocarcinoma. The model presents good coherence with experimental data for perturbed and wild-type cases. With the model, we propose two new molecular circuits involving several molecules that can stabilize hybrid states during the EMT. Moreover, we found that the two well studied circuits, AKT1/β-catenin and SNAIL1/miR-34, can cooperate with the predicted ones to favor the stabilization of the hybrid states. These findings highlight some possible unrecognized mechanisms during Wnt signaling and may provide alternative therapeutic strategies to control cancer metastatization.
Collapse
Affiliation(s)
- Daner Acunha Silveira
- Department of Physics, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil; Children's Cancer Institute, Porto Alegre, Rio Grande do Sul, Brazil
| | - Shantanu Gupta
- Department of Physics, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | | | | |
Collapse
|