1
|
Teworte S, Behrens MC, Widhe M, Gurzeler LA, Hedhammar M, Luciani P. A Fibronectin (FN)-Silk 3D Cell Culture Model as a Screening Tool for Repurposed Antifibrotic Drug Candidates for Endometriosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2409126. [PMID: 39967482 DOI: 10.1002/smll.202409126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/17/2024] [Indexed: 02/20/2025]
Abstract
This study advances sustainable pharmaceutical research for endometriosis by developing in vitro 3D cell culture models of endometriotic pathophysiology that allow antifibrotic drug candidates to be tested. Fibrosis is a key aspect of endometriosis, yet current cell models to study it remain limited. This work aims to bridge the translational gap between in vitro fibrosis research and preclinical testing of non-hormonal drug candidates. When grown in a 3D matrix of sustainably produced silk protein functionalized with a fibronectin-derived cell adhesion motif (FN-silk), endometrial stromal and epithelial cells respond to transforming growth factor beta-1 (TGF-β1) in a physiological manner as probed at the messenger RNA (mRNA) level. For stromal cells, this response to TGF-β1 is not observed in spheroids, while epithelial cell spheroids behave similarly to epithelial cell FN-silk networks. Pirfenidone, an antifibrotic drug approved for the treatment of idiopathic pulmonary fibrosis, reverses TGF-β1-induced upregulation of mRNA transcripts involved in fibroblast-to-myofibroblast transdifferentiation of endometrial stromal cells in FN-silk networks, supporting pirfenidone's potential as a repurposed non-hormonal endometriosis therapy. Overall, endometrial stromal cells cultured in FN-silk networks-which are composed of a sustainably produced, fully defined FN-silk protein-recapitulate fibrotic cellular behavior with high fidelity and enable antifibrotic drug testing.
Collapse
Affiliation(s)
- Sarah Teworte
- Pharmaceutical Technology Research Group, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern, CH-3012, Switzerland
| | - Mark C Behrens
- Pharmaceutical Technology Research Group, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern, CH-3012, Switzerland
| | - Mona Widhe
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm, SE-106 91, Sweden
| | - Lukas-Adrian Gurzeler
- RNA Biology Research Group, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern, CH-3012, Switzerland
| | - My Hedhammar
- Division of Protein Technology, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm, SE-106 91, Sweden
| | - Paola Luciani
- Pharmaceutical Technology Research Group, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern, CH-3012, Switzerland
| |
Collapse
|
2
|
Qin J, Sun M, Cheng J, Jiang H, Lv M, Jing J, Chen R, Fan Z, Du J. Ultrasound-Responsive Hydrogel Incorporated with TGF-β Mimetic Peptides for Endometrium Recovery to Restore Fertility. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57963-57971. [PMID: 39415495 DOI: 10.1021/acsami.4c07290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Unavoidable damage to the basal layer of the endometrium has a huge negative impact on a woman's reproductive health and menstrual cycle. However, it is difficult for medicine to penetrate a series of biological barriers toward the basal layer in the deeper area of the endometrium. To meet this challenge, we developed an ultrasound-responsive hydrogel incorporated with a transforming growth factor-beta (TGF-β) mimetic peptide to enhance pregnancy outcomes by restoring the function of a wounded endometrium due to its deep-tissue-penetration capability. In vitro studies revealed that the TGF-β-mimetic-peptide-loaded hydrogel could achieve 64.35% of cell migration under ultrasound stimulation even in phosphate-buffered saline of pH 6.0. Upon in situ sonication at the uterus, carboxymethyl chitosan can be released from degraded hydrogel to open tight junctions with reduced interstitial pressure by ultrasound to promote deep penetration. Rat studies revealed that the penetration capability of TGF-β-mimetic-peptide-loaded hydrogel with sonication was 1.6 times higher than that of the control group. Besides the rat uterine model, ex vivo human uterine tissue was also collected and imaged, demonstrating up to ∼700 μm of tissue penetration depth. In addition, compared to control groups, effective uterus recovery without intrauterine stenosis and endometrial cavity fluid was observed from rats with severe uterine injury treated by TGF-β-mimetic-peptide-loaded hydrogel. In addition, fertility restoration in the endometrial injury model was observed after treatment with such an ultrasound-responsive hydrogel incorporated with TGF-β mimetic peptides. Overall, this work provides an effective approach to treating endometrial injury for enhanced pregnancy outcomes.
Collapse
Affiliation(s)
- Jinlong Qin
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Min Sun
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Jiajing Cheng
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Huici Jiang
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Mingchen Lv
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianxing Jing
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Ran Chen
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Zhen Fan
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Riaz MA, Kary FL, Jensen A, Zeppernick F, Meinhold-Heerlein I, Konrad L. Long-Term Maintenance of Viable Human Endometrial Epithelial Cells to Analyze Estrogen and Progestin Effects. Cells 2024; 13:811. [PMID: 38786035 PMCID: PMC11120542 DOI: 10.3390/cells13100811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
There are fewer investigations conducted on human primary endometrial epithelial cells (HPEECs) compared to human primary endometrial stromal cells (HPESCs). One of the main reasons is the scarcity of protocols enabling prolonged epithelial cell culture. Even though it is possible to culture HPEECs in 3D over a longer period of time, it is technically demanding. In this study, we successfully established a highly pure, stable, and long-term viable human conditionally reprogrammed endometrial epithelial cell line, designated as eCRC560. These cells stained positive for epithelial markers, estrogen and progesterone receptors, and epithelial cell-cell contacts but negative for stromal and endothelial cell markers. Estradiol (ES) reduced the abundance of ZO-1 in a time- and dose-dependent manner, in contrast to the dose-dependent increase with the progestin dienogest (DNG) when co-cultured with HPESCs. Moreover, ES significantly increased cell viability, cell migration, and invasion of the eCRC560 cells; all these effects were inhibited by pretreatment with DNG. DNG withdrawal led to a significantly disrupted monolayer of eCRC560 cells in co-culture with HPESCs, yet it markedly increased the adhesion of eCRC560 to the human mesothelial MeT-5A cells. The long-term viable eCRC560 cells are suitable for in vitro analysis of HPEECs to study the epithelial compartment of the human endometrium and endometrial pathologies.
Collapse
Affiliation(s)
- Muhammad Assad Riaz
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.L.K.); (F.Z.); (I.M.-H.)
| | - Franziska Louisa Kary
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.L.K.); (F.Z.); (I.M.-H.)
| | - Alexandra Jensen
- Institute of Radiooncology and Radiotherapy, Clinic Fulda, 36043 Fulda, Germany;
| | - Felix Zeppernick
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.L.K.); (F.Z.); (I.M.-H.)
| | - Ivo Meinhold-Heerlein
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.L.K.); (F.Z.); (I.M.-H.)
| | - Lutz Konrad
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.L.K.); (F.Z.); (I.M.-H.)
| |
Collapse
|
4
|
Choi AS, Jenkins-Lane LM, Barton W, Kumari A, Lancaster C, Raulerson C, Ji H, Altomare D, Starr MD, Whitaker R, Phaeton R, Arend R, Shtutman M, Nixon AB, Hempel N, Lee NY, Mythreye K. Glycosaminoglycan modifications of betaglycan regulate ectodomain shedding to fine-tune TGF-β signaling responses in ovarian cancer. Cell Commun Signal 2024; 22:128. [PMID: 38360757 PMCID: PMC10870443 DOI: 10.1186/s12964-024-01496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/21/2024] [Indexed: 02/17/2024] Open
Abstract
In pathologies including cancer, aberrant Transforming Growth Factor-β (TGF-β) signaling exerts profound tumor intrinsic and extrinsic consequences. Intense clinical endeavors are underway to target this pathway. Central to the success of these interventions is pinpointing factors that decisively modulate the TGF-β responses. Betaglycan/type III TGF-β receptor (TβRIII), is an established co-receptor for the TGF-β superfamily known to bind directly to TGF-βs 1-3 and inhibin A/B. Betaglycan can be membrane-bound and also undergo ectodomain cleavage to produce soluble-betaglycan that can sequester its ligands. Its extracellular domain undergoes heparan sulfate and chondroitin sulfate glycosaminoglycan modifications, transforming betaglycan into a proteoglycan. We report the unexpected discovery that the heparan sulfate glycosaminoglycan chains on betaglycan are critical for the ectodomain shedding. In the absence of such glycosaminoglycan chains betaglycan is not shed, a feature indispensable for the ability of betaglycan to suppress TGF-β signaling and the cells' responses to exogenous TGF-β ligands. Using unbiased transcriptomics, we identified TIMP3 as a key inhibitor of betaglycan shedding thereby influencing TGF-β signaling. Our results bear significant clinical relevance as modified betaglycan is present in the ascites of patients with ovarian cancer and can serve as a marker for predicting patient outcomes and TGF-β signaling responses. These studies are the first to demonstrate a unique reliance on the glycosaminoglycan chains of betaglycan for shedding and influence on TGF-β signaling responses. Dysregulated shedding of TGF-β receptors plays a vital role in determining the response and availability of TGF-βs', which is crucial for prognostic predictions and understanding of TGF-β signaling dynamics.
Collapse
Affiliation(s)
- Alex S Choi
- Department of Pathology and O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Laura M Jenkins-Lane
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Wade Barton
- Department of Gynecology Oncology, Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, 35233, USA
| | - Asha Kumari
- Department of Pathology and O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Carly Lancaster
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Calen Raulerson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Hao Ji
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Diego Altomare
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Mark D Starr
- Department of Medicine and Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Regina Whitaker
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Rebecca Phaeton
- Department of Obstetrics and Gynecology, and Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA, 17033, USA
| | - Rebecca Arend
- Department of Gynecology Oncology, Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, 35233, USA
| | - Michael Shtutman
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Andrew B Nixon
- Department of Medicine and Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Nadine Hempel
- Department of Medicine, Division of Hematology-Oncology, Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Nam Y Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Karthikeyan Mythreye
- Department of Pathology and O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
5
|
Maoga JB, Riaz MA, Mwaura AN, Mecha E, Omwandho COA, Scheiner-Bobis G, Meinhold-Heerlein I, Konrad L. Analysis of Membrane Type-1 Matrix Metalloproteinase (MT1-MMP, MMP14) in Eutopic and Ectopic Endometrium and in Serum and Endocervical Mucus of Endometriosis. Biomedicines 2023; 11:2730. [PMID: 37893104 PMCID: PMC10604514 DOI: 10.3390/biomedicines11102730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Membrane type-matrix metalloproteinases (MT-MMPs) are a subgroup of the matrix metalloproteinases (MMPs) family and are key molecules in the degradation of the extracellular matrix. Membrane type-1 matrix metalloproteinase (MT1-MMP, MMP14) is often deregulated in different cancer tissues and body fluids of human cancer patients; however, MT1-MMP levels in endometriosis and adenomyosis patients are currently unknown. MATERIALS AND METHODS Tissue samples from patients with and without endometriosis or adenomyosis were analyzed with immunohistochemistry for the localization of MT1-MMP. Serum and endocervical mucus samples from patients with and without endometriosis or adenomyosis were investigated with MT1-MMP ELISAs. RESULTS MT1-MMP was localized preferentially in the glands of eutopic and ectopic endometrium. MT1-MMP protein levels are significantly reduced in ovarian endometriosis (HSCORE = 31) versus eutopic endometrium (HSCORE = 91) and adenomyosis (HSCORE = 149), but significantly increased in adenomyosis (HSCORE = 149) compared to eutopic endometrium (HSCORE = 91). Similarly, analysis of the levels of MT1-MMP using enzyme-linked immune assays (ELISAs) demonstrated a significant increase in the concentrations of MT1-MMP in the serum of endometriosis patients (1.3 ± 0.8) versus controls (0.7 ± 0.2), but not in the endocervical mucus. Furthermore, MT1-MMP levels in the endocervical mucus of patients with endometriosis were notably reduced in patients using contraception (3.2 ± 0.4) versus those without contraception (3.8 ± 0.2). CONCLUSIONS Taken together, our findings showed an opposite regulation of MT1-MMP in the tissue of ovarian endometriosis and adenomyosis compared to eutopic endometrium without endometriosis but increased serum levels in patients with endometriosis.
Collapse
Affiliation(s)
- Jane B. Maoga
- Center of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.B.M.); (M.A.R.); (A.N.M.); (I.M.-H.)
| | - Muhammad A. Riaz
- Center of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.B.M.); (M.A.R.); (A.N.M.); (I.M.-H.)
| | - Agnes N. Mwaura
- Center of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.B.M.); (M.A.R.); (A.N.M.); (I.M.-H.)
| | - Ezekiel Mecha
- Department of Biochemistry, University of Nairobi, Nairobi P.O. Box 30197-00100, Kenya;
| | - Charles O. A. Omwandho
- Department of Health Sciences, Kirinyaga University, Kerugoya P.O. Box 143-10300, Kenya;
| | - Georgios Scheiner-Bobis
- Institute for Veterinary Physiology and Biochemistry, School of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Ivo Meinhold-Heerlein
- Center of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.B.M.); (M.A.R.); (A.N.M.); (I.M.-H.)
| | - Lutz Konrad
- Center of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.B.M.); (M.A.R.); (A.N.M.); (I.M.-H.)
| |
Collapse
|
6
|
Cho SB. Molecular Mechanisms of Endometriosis Revealed Using Omics Data. Biomedicines 2023; 11:2210. [PMID: 37626707 PMCID: PMC10452455 DOI: 10.3390/biomedicines11082210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/22/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Endometriosis is a gynecological disorder prevalent in women of reproductive age. The primary symptoms include dysmenorrhea, irregular menstruation, and infertility. However, the pathogenesis of endometriosis remains unclear. With the advent of high-throughput technologies, various omics experiments have been conducted to identify genes related to the pathophysiology of endometriosis. This review highlights the molecular mechanisms underlying endometriosis using omics. When genes identified in omics experiments were compared with endometriosis disease genes identified in independent studies, the number of overlapping genes was moderate. However, the characteristics of these genes were found to be equivalent when functional gene set enrichment analysis was performed using gene ontology and biological pathway information. These findings indicate that omics technology provides invaluable information regarding the pathophysiology of endometriosis. Moreover, the functional characteristics revealed using enrichment analysis provide important clues for discovering endometriosis disease genes in future research.
Collapse
Affiliation(s)
- Seong Beom Cho
- Department of Biomedical Informatics, College of Medicine, Gachon University, 38-13, Dokgeom-ro 3 Street Namdon-gu, Incheon 21565, Republic of Korea
| |
Collapse
|
7
|
Mwaura AN, Riaz MA, Maoga JB, Mecha E, Omwandho COA, Scheiner-Bobis G, Meinhold-Heerlein I, Konrad L. Activin A Modulates Betaglycan Shedding via the ALK4-SMAD3-Dependent Pathway in Endometriotic Cells. Biomolecules 2022; 12:biom12121749. [PMID: 36551177 PMCID: PMC9776114 DOI: 10.3390/biom12121749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/10/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022] Open
Abstract
The TGF-β superfamily members, activins and inhibins, are mainly involved in cell proliferation, cell survival, invasion, immune surveillance, and lesion growth in endometriosis. Herein, we investigated the modulation of the TGF-β type III receptor (betaglycan or BG) by activin A and inhibin A in endometriosis in vitro. Often, BG undergoes ectodomain shedding releasing soluble BG (sBG) which frequently antagonizes TGF-β signaling. The effects of activin A on BG shedding and signaling pathways involved were evaluated with the inhibitors LY364947 and SIS3, siRNA knockdown in human endometrial cells (12Z, THESC, Ishikawa, and primary stromal cells) and were quantified with BG ELISAs. The effects of activin A and inhibin A on the secretion of MMP2 and MMP3 were analyzed using ELISAs. The effects of activin A on the BG expression were analyzed using RT-qPCR and western blot. The CCK-8 and BrdU assays were used to evaluate the effects of the recombinant BG on cell viability and proliferation. Activin A stimulation resulted in a significant time- and dose-dependent reduction in BG shedding, which was found to be activin A/ALK-4/SMAD3- but not SMAD2-dependent. Activin A increased the BG mRNA expression but had no effect on the protein expression. Likewise, inhibin A was found to block BG shedding. Activin A, but not inhibin A, significantly enhanced the secretion of MMP2 and MMP3. The recombinant BG had no effect on the viability and proliferation of endometriotic cells. Together, these observations support a novel role for activin A with BG in modulating the TGF-β superfamily ligands in endometrial cells in vitro.
Collapse
Affiliation(s)
- Agnes N. Mwaura
- Faculty of Medicine, Center of Gynecology and Obstetrics, Justus-Liebig-University, D-35392 Giessen, Germany
| | - Muhammad A. Riaz
- Faculty of Medicine, Center of Gynecology and Obstetrics, Justus-Liebig-University, D-35392 Giessen, Germany
| | - Jane B. Maoga
- Faculty of Medicine, Center of Gynecology and Obstetrics, Justus-Liebig-University, D-35392 Giessen, Germany
| | - Ezekiel Mecha
- Department of Biochemistry, University of Nairobi, Nairobi P.O. Box 30197-00100, Kenya
| | - Charles O. A. Omwandho
- Department of Biochemistry, University of Nairobi, Nairobi P.O. Box 30197-00100, Kenya
- Department of Health Sciences, Kirinyaga University, Kerugoya P.O. Box 143-10300, Kenya
| | - Georgios Scheiner-Bobis
- Institute for Veterinary Physiology and Biochemistry, School of Veterinary Medicine, Justus-Liebig-University, D-35392 Giessen, Germany
| | - Ivo Meinhold-Heerlein
- Faculty of Medicine, Center of Gynecology and Obstetrics, Justus-Liebig-University, D-35392 Giessen, Germany
| | - Lutz Konrad
- Faculty of Medicine, Center of Gynecology and Obstetrics, Justus-Liebig-University, D-35392 Giessen, Germany
- Correspondence: ; Tel.: +49-641-985-45282; Fax: +49-641-985-45258
| |
Collapse
|
8
|
Kohno T, Kojima T. Atypical Macropinocytosis Contributes to Malignant Progression: A Review of Recent Evidence in Endometrioid Endometrial Cancer Cells. Cancers (Basel) 2022; 14:cancers14205056. [PMID: 36291839 PMCID: PMC9599675 DOI: 10.3390/cancers14205056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/01/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary A novel type of macropinocytosis has been identified as a trigger for the malignant progression of endometrial cancer. Transiently reducing epithelial barrier homeostasis leads to macropinocytosis by splitting between adjacent cells in endometrioid endometrial cancer. Macropinocytosis causes morphological changes in well-differentiated to poorly differentiated cancer cells. Inhibition of macropinocytosis promotes a persistent dormant state in the intrinsic KRAS-mutated cancer cell line Sawano. This review focuses on the mechanisms of atypical macropinocytosis and its effects on cellular function, and it describes the physiological processes involved in inducing resting conditions in endometrioid endometrial cancer cells. Abstract Macropinocytosis is an essential mechanism for the non-specific uptake of extracellular fluids and solutes. In recent years, additional functions have been identified in macropinocytosis, such as the intracellular introduction pathway of drugs, bacterial and viral infection pathways, and nutritional supplement pathway of cancer cells. However, little is known about the changes in cell function after macropinocytosis. Recently, it has been reported that macropinocytosis is essential for endometrial cancer cells to initiate malignant progression in a dormant state. Macropinocytosis is formed by a temporary split of adjacent bicellular junctions of epithelial sheets, rather than from the apical surface or basal membrane, as a result of the transient reduction of tight junction homeostasis. This novel type of macropinocytosis has been suggested to be associated with the malignant pathology of endometriosis and endometrioid endometrial carcinoma. This review outlines the induction of malignant progression of endometrial cancer cells by macropinocytosis based on a new mechanism and the potential preventive mechanism of its malignant progression.
Collapse
|