1
|
Sultan SME, Yousef AF, Ali WM, Mohamed AAA, Ahmed ARM, Shalaby ME, Teiba II, Hassan AM, Younes NA, Kotb EF. Cold atmospheric plasma enhances morphological and biochemical attributes of tomato seedlings. BMC PLANT BIOLOGY 2024; 24:420. [PMID: 38760701 PMCID: PMC11102223 DOI: 10.1186/s12870-024-04961-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/29/2024] [Indexed: 05/19/2024]
Abstract
Cold atmospheric plasma (CAP) is a physical technology with notable effects on living organisms. In the present study, tomato seeds (Solanum lycopersicum var. Bassimo Mill.) were exposed to CAP for various time intervals, ranging from 1 to 5 min, in both continuous and intermittent periods, and were compared with a control group that received no CAP treatment. Seedlings grown from treated seeds exhibited improvements in levels of growth traits, photosynthetic pigments, and metabolite contents when compared to the control group. Seedlings from seeds treated with S04 displayed significant increases in shoot and root lengths, by 32.45% and 20.60% respectively, compared to the control group. Moreover, seedlings from seeds treated with S01 showed a 101.90% increase in total protein, whereas those treated with S02 experienced a 119.52% increase in carbohydrate content. These findings highlight the substantial improvements in growth characteristics, photosynthetic pigments, and metabolite levels in seedlings from treated seeds relative to controls. Total antioxidant capacity was boosted by CAP exposure. The activities of enzymes including superoxide dismutase, catalase, and peroxidases were stimulated by S02 and exceeded control treatment by (177.48%, 137.41%, and 103.32%), respectively. Additionally, exposure to S04 increased the levels of non-enzymatic antioxidants like flavonoids, phenolics, saponins, and tannins over the control group (38.08%, 30.10%, 117.19%, and 94.44%), respectively. Our results indicate that CAP-seed priming is an innovative and cost-effective approach to enhance the growth, bioactive components, and yield of tomato seedlings.
Collapse
Affiliation(s)
- Sadoun M E Sultan
- Department of Horticulture, College of Agriculture, University of Al-Azhar (Assiut Branch), Assiut, 71524, Egypt
| | - Ahmed Fathy Yousef
- Department of Horticulture, College of Agriculture, University of Al-Azhar (Assiut Branch), Assiut, 71524, Egypt
| | - Waleed M Ali
- Department of Horticulture, College of Agriculture, University of Al-Azhar (Assiut Branch), Assiut, 71524, Egypt
| | - Amal A A Mohamed
- Botany Department, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Abdel-Raddy M Ahmed
- Department of Agronomy (Biochemistry), Faculty of Agriculture, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Mohamed E Shalaby
- Department of Plant production, Collage of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Islam I Teiba
- Microbiology, Botany Department, Faculty of Agriculture, Tanta University, Tanta, 31527, Egypt
| | - A M Hassan
- Department of Physics, College of Science, University of Al-Azhar (Assiut Branch), Assiut, 71542, Egypt
| | - Nabil A Younes
- Department of Horticulture, College of Agriculture, University of Al-Azhar (Assiut Branch), Assiut, 71524, Egypt
| | - E F Kotb
- Department of Physics, College of Science, University of Al-Azhar (Assiut Branch), Assiut, 71542, Egypt.
| |
Collapse
|
2
|
Yuan M, Jin T, Wu J, Li L, Chen G, Chen J, Wang Y, Sun J. IAA-miR164a-NAC100L1 module mediates symbiotic incompatibility of cucumber/pumpkin grafted seedlings through regulating callose deposition. HORTICULTURE RESEARCH 2024; 11:uhad287. [PMID: 38371634 PMCID: PMC10873582 DOI: 10.1093/hr/uhad287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/17/2023] [Indexed: 02/20/2024]
Abstract
Grafting is one of the key technologies to overcome the obstacles of continuous cropping, and improve crop yield and quality. However, the symbiotic incompatibility between rootstock and scion affects the normal growth and development of grafted seedlings after survival. The specific molecular regulation mechanism of graft incompatibility is still largely unclear. In this study, we found that the IAA-miR164a-NAC100L1 module induced callose deposition to mediate the symbiotic incompatibility of cucumber/pumpkin grafted seedlings. The incompatible combination (IG) grafting interface accumulated more callose, and the activity of callose synthase (CmCalS1) and IAA content were significantly higher than in the compatible combination (CG). Treatment with IAA polar transport inhibitor in the root of the IG plants decreased CmCalS activity and callose content. Furthermore, IAA negatively regulated the expression of Cm-miR164a, which directly targeted cleavage of CmNAC100L1. Interestingly, CmNAC100L1 interacted with CmCalS1 to regulate its activity. Further analysis showed that the interaction between CmNAC100L1 and CmCalS1 increased the activity of CmCalS1 in the IG plants but decreased it in the CG plants. Point mutation analysis revealed that threonine at the 57th position of CmCalS1 protein played a critical role to maintain its enzyme activity in the incompatible rootstock. Thus, IAA inhibited the expression of Cm-miR164a to elevate the expression of CmNAC100L1, which promoted CmNAC100L1 interaction with CmCalS1 to enhance CmCalS1 activity, resulting in callose deposition and symbiotic incompatibility of cucumber/pumpkin grafted seedlings.
Collapse
Affiliation(s)
- Mingzhu Yuan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Tong Jin
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianqiang Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lan Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangling Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaqi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|