1
|
Braun D, Rosenberg AM, Rabaniam E, Haruvi R, Malamud D, Barbara R, Aiznkot T, Levavi-Sivan B, Kawashima T. High-resolution tracking of unconfined zebrafish behavior reveals stimulatory and anxiolytic effects of psilocybin. Mol Psychiatry 2024; 29:1046-1062. [PMID: 38233467 PMCID: PMC11176078 DOI: 10.1038/s41380-023-02391-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
Serotonergic psychedelics are emerging therapeutics for psychiatric disorders, yet their underlying mechanisms of action in the brain remain largely elusive. Here, we developed a wide-field behavioral tracking system for larval zebrafish and investigated the effects of psilocybin, a psychedelic serotonin receptor agonist. Machine learning analyses of precise body kinematics identified latent behavioral states reflecting spontaneous exploration, visually-driven rapid swimming, and irregular swim patterns following stress exposure. Using this method, we found that acute psilocybin treatment has two behavioral effects: [i] facilitation of spontaneous exploration ("stimulatory") and [ii] prevention of irregular swim patterns following stress exposure ("anxiolytic"). These effects differed from the effect of acute SSRI treatment and were rather similar to the effect of ketamine treatment. Neural activity imaging in the dorsal raphe nucleus suggested that psilocybin inhibits serotonergic neurons by activating local GABAergic neurons, consistent with psychedelic-induced suppression of serotonergic neurons in mammals. These findings pave the way for using larval zebrafish to elucidate neural mechanisms underlying the behavioral effects of serotonergic psychedelics.
Collapse
Affiliation(s)
- Dotan Braun
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
- The Jerusalem Mental Health Center, Jerusalem, Israel
| | - Ayelet M Rosenberg
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Elad Rabaniam
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Ravid Haruvi
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Dorel Malamud
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Rani Barbara
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel
| | - Tomer Aiznkot
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 229 Herzl Street, Rehovot, Israel
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 229 Herzl Street, Rehovot, Israel
| | - Takashi Kawashima
- Department of Brain Sciences, Weizmann Institute of Science, 234 Herzl Street, Rehovot, Israel.
| |
Collapse
|
2
|
Rolland L, Torrente AG, Bourinet E, Maskini D, Drouard A, Chevalier P, Jopling C, Faucherre A. Prolonged Piezo1 Activation Induces Cardiac Arrhythmia. Int J Mol Sci 2023; 24:ijms24076720. [PMID: 37047693 PMCID: PMC10094979 DOI: 10.3390/ijms24076720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
The rhythmical nature of the cardiovascular system constantly generates dynamic mechanical forces. At the centre of this system is the heart, which must detect these changes and adjust its performance accordingly. Mechanoelectric feedback provides a rapid mechanism for detecting even subtle changes in the mechanical environment and transducing these signals into electrical responses, which can adjust a variety of cardiac parameters such as heart rate and contractility. However, pathological conditions can disrupt this intricate mechanosensory system and manifest as potentially life-threatening cardiac arrhythmias. Mechanosensitive ion channels are thought to be the main proponents of mechanoelectric feedback as they provide a rapid response to mechanical stimulation and can directly affect cardiac electrical activity. Here, we demonstrate that the mechanosensitive ion channel PIEZO1 is expressed in zebrafish cardiomyocytes. Furthermore, chemically prolonging PIEZO1 activation in zebrafish results in cardiac arrhythmias. indicating that this ion channel plays an important role in mechanoelectric feedback. This also raises the possibility that PIEZO1 gain of function mutations could be linked to heritable cardiac arrhythmias in humans.
Collapse
Affiliation(s)
- Laura Rolland
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, LabEx ICST, 34094 Montpellier, France
| | - Angelo Giovanni Torrente
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, LabEx ICST, 34094 Montpellier, France
| | - Emmanuel Bourinet
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, LabEx ICST, 34094 Montpellier, France
| | - Dounia Maskini
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, LabEx ICST, 34094 Montpellier, France
| | - Aurélien Drouard
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, LabEx ICST, 34094 Montpellier, France
| | - Philippe Chevalier
- Neuromyogene Institut, Claude Bernard University, Lyon 1, 69008 Villeurbanne, France
- Service de Rythmologie, Hospices Civils de Lyon, 69500 Lyon, France
| | - Chris Jopling
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, LabEx ICST, 34094 Montpellier, France
| | - Adèle Faucherre
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, LabEx ICST, 34094 Montpellier, France
| |
Collapse
|