1
|
Garcia JC, Whitehouse-Strong H, Chaulagain N, Shankar K. Tunable Plasmochromic Devices Using Gold Nanoislands Integrated with an Electropolymerized Organic Semiconductor. ACS APPLIED MATERIALS & INTERFACES 2025; 17:24239-24251. [PMID: 40223749 DOI: 10.1021/acsami.4c22005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The need for the reversible and on-demand reconfiguration of local surface plasmon resonances (LSPR) has driven the emerging field of active plasmonics. The overwhelming majority of electrochromic-polymer-mediated active plasmonic nanostructures consist of lithographically fabricated nanoarrays or colloidal nanoparticles embedded in conductive polymers, such as polyaniline (PANI). Herein, we introduce the semiconducting polymer poly(3-methylthiophene) (P3MT) as a novel tunable dielectric medium for active plasmon control. Likewise, we employ thermally dewetted gold nanoislands (AuNIs) as scalable, cost-effective, and robust plasmonic nanostructures. To date, active plasmonic devices based on P3MT or thermally dewetted nanostructures have yet to be explored. Active plasmonic devices consisting of AuNIs coated with ultrathin 12-15 nm P3MT shells were fabricated and tested. Modulation between reduced and oxidized P3MT resulted in a reversible average LSPR modulation of 22 nm, which compares to or even outperforms other electrochromic polymers at similar shell thicknesses. The plasmochromic performance of P3MT-coated Au nanoislands with various LSPRs and size distributions was evaluated in terms of modulation depth, response time, reversibility, chromaticity, and stability. Cyclic stability measurements reveal that plasmonic shifts can still be observed after 1000 cycles of repeated modulation. This work not only expands the current roster of tunable dielectric media and plasmonic nanostructures for use in active plasmonics but also lays the foundation for next-generation active plasmonic technologies such as tunable organic photovoltaics (OPVs), organic photodiodes (OPDs), and plasmonic field-effect transistors (FETs).
Collapse
Affiliation(s)
- John C Garcia
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton, Alberta T6G 1H9, Canada
| | - Harrison Whitehouse-Strong
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton, Alberta T6G 1H9, Canada
| | - Narendra Chaulagain
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton, Alberta T6G 1H9, Canada
| | - Karthik Shankar
- Department of Electrical and Computer Engineering, University of Alberta, 9211-116 St, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
2
|
Meira DI, Barbosa AI, Borges J, Reis RL, Correlo VM, Vaz F. Label-free localized surface plasmon resonance (LSPR) biosensor, based on Au-Ag NPs embedded in TiO 2 matrix, for detection of Ochratoxin-A (OTA) in wine. Talanta 2025; 284:127238. [PMID: 39566157 DOI: 10.1016/j.talanta.2024.127238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/04/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Ochratoxin-A (OTA) is a widespread foodstuff contaminant with potential carcinogenic effects. Innovative sensing technologies that allow on-site and sensitive food screening can have a significant impact on food and environment safety. A novel and quantitative label-free LSPR-based biosensor was specifically designed for OTA detection, employing a portable LSPR spectroscopy sensing system for efficient on-site and cost-effective analysis. This biosensor is comprised of monoclonal anti-OTA antibodies immobilized on the surface of sputtered Au-Ag nanoparticles embedded in a TiO2 matrix. Under optimized conditions, the LSPR-based biosensor demonstrated a linear dynamic response from 0.05 to 2 ng mL-1, with an estimated limit of detection at 7 pg mL-1, using 55 μL of sample, outperforming commercial ELISA technique in relevant bioanalytical parameters. Sensitivity in OTA detection is crucial because it ensures the accurate identification of low concentrations, which is essential for preventing health risks associated to cumulative ingestion of contaminated food products. The robustness and feasibility of the presented LSPR-based biosensing was tested using spiked white wine, exhibiting a satisfactory recovery of 93 %-113 %, confirming its efficacy in a complex matrix.
Collapse
Affiliation(s)
- Diana I Meira
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal; 3 B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Gandra, 4805-909, Caldas das Taipas, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-909, Caldas das Taipas, Guimarães, Portugal
| | - Ana I Barbosa
- 3 B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Gandra, 4805-909, Caldas das Taipas, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-909, Caldas das Taipas, Guimarães, Portugal
| | - Joel Borges
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal; LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Rui L Reis
- 3 B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Gandra, 4805-909, Caldas das Taipas, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-909, Caldas das Taipas, Guimarães, Portugal
| | - Vitor M Correlo
- 3 B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Gandra, 4805-909, Caldas das Taipas, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-909, Caldas das Taipas, Guimarães, Portugal
| | - Filipe Vaz
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal; LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
3
|
Takaloo S, Xu AH, Zaidan L, Irannejad M, Yavuz M. Towards Point-of-Care Single Biomolecule Detection Using Next Generation Portable Nanoplasmonic Biosensors: A Review. BIOSENSORS 2024; 14:593. [PMID: 39727858 DOI: 10.3390/bios14120593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
Over the past few years, nanoplasmonic biosensors have gained widespread interest for early diagnosis of diseases thanks to their simple design, low detection limit down to the biomolecule level, high sensitivity to even small molecules, cost-effectiveness, and potential for miniaturization, to name but a few benefits. These intrinsic natures of the technology make it the perfect solution for compact and portable designs that combine sampling, analysis, and measurement into a miniaturized chip. This review summarizes applications, theoretical modeling, and research on portable nanoplasmonic biosensor designs. In order to develop portable designs, three basic components have been miniaturized: light sources, plasmonic chips, and photodetectors. There are five types of portable designs: portable SPR, miniaturized components, flexible, wearable SERS-based, and microfluidic. The latter design also reduces diffusion times and allows small amounts of samples to be delivered near plasmonic chips. The properties of nanomaterials and nanostructures are also discussed, which have improved biosensor performance metrics. Researchers have also made progress in improving the reproducibility of these biosensors, which is a major obstacle to their commercialization. Furthermore, future trends will focus on enhancing performance metrics, optimizing biorecognition, addressing practical constraints, considering surface chemistry, and employing emerging technologies. In the foreseeable future, these trends will be merged to result in portable nanoplasmonic biosensors offering detection of even a single biomolecule.
Collapse
Affiliation(s)
- Saeed Takaloo
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
| | - Alexander H Xu
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Liena Zaidan
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | | | - Mustafa Yavuz
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
4
|
Günaydın BN, Çetinkaya AO, Torabfam M, Tütüncüoğlu A, Kayalan CI, Bayazıt MK, Yüce M, Kurt H. Plasmonic group IVB transition metal nitrides: Fabrication methods and applications in biosensing, photovoltaics and photocatalysis. Adv Colloid Interface Sci 2024; 333:103298. [PMID: 39243484 DOI: 10.1016/j.cis.2024.103298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
This review paper focuses on group IVB transition metal nitrides (TMNs) such as titanium nitride (TiN), zirconium nitride (ZrN), and hafnium nitride (HfN) and as alternative plasmonic materials to noble metals like gold and silver. It delves into the fabrication methods of these TMNs, particularly emphasizing thin film fabrication techniques like magnetron sputtering and atomic layer deposition, as well as nanostructure fabrication processes applied to these thin films. Overcoming the current fabrication and application-related challenges requires a deep understanding of the material properties, deposition techniques, and application requirements. Here, we discuss the impact of fabrication parameters on the properties of resulting films, highlighting the importance of aligning fabrication methods with practical application requirements for optimal performance. Additionally, we summarize and tabulate the most recent plasmonic applications of these TMNs in fields like biosensing, photovoltaic energy, and photocatalysis, contributing significantly to the current literature by consolidating knowledge on TMNs.
Collapse
Affiliation(s)
- Beyza Nur Günaydın
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Türkiye; SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Türkiye
| | - Ali Osman Çetinkaya
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Türkiye
| | - Milad Torabfam
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Türkiye
| | - Atacan Tütüncüoğlu
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Türkiye
| | - Cemre Irmak Kayalan
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Türkiye
| | - Mustafa Kemal Bayazıt
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Türkiye
| | - Meral Yüce
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Türkiye; Department of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ, UK.
| | - Hasan Kurt
- Department of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
5
|
Ershov VA, Ershov BG. Oxidative Dissolution and the Aggregation of Silver Nanoparticles in Drinking and Natural Waters: The Influence of the Medium on the Process Development. TOXICS 2024; 12:757. [PMID: 39453177 PMCID: PMC11510811 DOI: 10.3390/toxics12100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Currently, there are quite a few data on the ways silver nanoparticles get into the aquatic environment, on their subsequent dissolution in water, and on the release of toxic Ag+ ions. Differences in the experimental conditions hinder the determination of the basic regularities of this process. In this study, the stages of oxidative dissolution of AgNPs were studied, starting from the formation of silver hydrosol in deaerated solution, the reaction of silver with oxygen and with drinking and natural waters, the analysis of intermediate species of the oxidized colloidal particles, and the subsequent particle aggregation and precipitation, by optical spectroscopy, DLS, TEM, STEM, and EDX. In the presence of oxygen, silver nanoparticles undergo oxidative dissolution, which gives Ag+ ions and results in the subsequent aggregation of nanoparticles. The carbonate hydrosol loses stability when mixed with waters of various origin. This is due to the destruction of the electric double layer, which is caused by an increase in the solution's ionic strength and the neutralization of the charge of the metal core. The environmental hazard of the silver nanoparticle hydrosol would noticeably change and/or decrease when the nanoparticles get into natural waters because of their fast precipitation and because the major part of released Ag+ ions form poorly soluble salts with ions present in water.
Collapse
Affiliation(s)
- Vadim A. Ershov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Leninsky Pr. 31-4, 119071 Moscow, Russia;
| | | |
Collapse
|
6
|
Reuter C, Hauswald W, Burgold-Voigt S, Hübner U, Ehricht R, Weber K, Popp J. Imaging Diffractometric Biosensors for Label-Free, Multi-Molecular Interaction Analysis. BIOSENSORS 2024; 14:398. [PMID: 39194627 DOI: 10.3390/bios14080398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/26/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Biosensors are used for the specific and sensitive detection of biomolecules. In conventional approaches, the suspected target molecules are bound to selected capture molecules and successful binding is indicated by additional labelling to enable optical readout. This labelling requires additional processing steps tailored to the application. While numerous label-free interaction assays exist, they often compromise on detection characteristics. In this context, we introduce a novel diffractometric biosensor, comprising a diffractive biosensor chip and an associated optical reader assembly. This innovative system can capture an entire assay, detecting various types of molecules in a label-free manner and present the results within in a single, comprehensive image. The applicability of the biosensor is assessed for the detection of viral DNA as well as proteins directly in human plasma, investigating different antigens. In our experiments, we achieve a detection limit of 4.2 pg/mm², which is comparable to other label-free optical biosensors. The simplicity and robustness of the method make it a compelling option for advancing biosensing technologies. This work contributes to the development of an imaging diffractometric biosensor with the potential for multiple applications in molecular interaction analysis.
Collapse
Affiliation(s)
- Cornelia Reuter
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Walter Hauswald
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
| | - Sindy Burgold-Voigt
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Uwe Hübner
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany
- InfectoGnostics Research Campus Jena, Center for Applied Research, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Karina Weber
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
| | - Juergen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany
- InfectoGnostics Research Campus Jena, Center for Applied Research, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
7
|
Sarapukdee P, Schulz D, Palzer S. Grating Structures for Silver-Based Surface Plasmon Resonance Sensors with Adjustable Excitation Angle. SENSORS (BASEL, SWITZERLAND) 2024; 24:4538. [PMID: 39065935 PMCID: PMC11280483 DOI: 10.3390/s24144538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Silver-based grating structures offer means for implementing low-cost, efficient grating couplers for use in surface plasmon resonance (SPR) sensors. One-dimensional grating structures with a fixed periodicity are confined to operate effectively within a single planar orientation. However, two-dimensional grating structures as well as grating structures with variable periodicity allow for the plasmon excitation angle to be seamlessly adjusted. This study demonstrates silver-based grating designs that allow for the plasmon excitation angle to be adjusted via rotation or beam position. The flexible angle adjustment opens up the possibility of developing SPR sensor designs with an expanded dynamic range and increased flexibility in sensing applications. The results demonstrate that efficient coupling into two diffraction orders is possible, which ultimately leads to an excitation angle range from 16° to 40° by rotating a single structure. The findings suggest a promising direction for the development of versatile and adaptable SPR sensing platforms with enhanced performance characteristics.
Collapse
Affiliation(s)
| | | | - Stefan Palzer
- Department of Electrical Engineering and Information Technology, Technical University Dortmund, Friedrich-Wöhler-Weg 4, 44227 Dortmund, Germany; (P.S.)
| |
Collapse
|
8
|
Parviz M, Shokorlou YM, Heidarzadeh H. Structure of plasmonic multi spectral Apta sensor and analyzing of bulk and surface sensitivity. Sci Rep 2024; 14:13245. [PMID: 38853163 PMCID: PMC11163006 DOI: 10.1038/s41598-024-64249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
In this work, a multispectral aptasensor structure, including a sub-layer and two side walls, was presented. The cells are positioned at the down and top of the structure, with the down cells oriented perpendicular to the walls and the top cells aligned parallel to the walls. The validity of the findings was verified by the utilization of a numerical simulation technique known as 3D Finite Difference Time Domain (FDTD). The biosensor under consideration exhibits sensitivities of 1093.7 nm/RIU, 754 nm/RIU, and 707.43 nm/RIU in mode III, mode II, and mode I, respectively. In the majority of instances, the quantity of analyte available is insufficient to coat the surface of the sensor thoroughly. Consequently, in this study, the evaluation of surface sensitivity was undertaken alongside bulk sensitivity. The surface sensitivity of the suggested structure for mode II in the sensor layer, with thicknesses of 10, 20, 30, and 70 nm, is measured to be 25, 78, 344, and 717.636 nm/RIU, respectively. Our design incorporates a unique arrangement of sub-layer and side walls, with cells positioned to maximize interaction with the target analyte. This innovative configuration, combined with Ag for its superior plasmonic properties, enables the detection of E. coli O157 with remarkable sensitivity.
Collapse
Affiliation(s)
- Mahya Parviz
- Department of Electrical Engineering, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Younes Majd Shokorlou
- Department of Electrical and Computer Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hamid Heidarzadeh
- Department of Electrical and Computer Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.
| |
Collapse
|
9
|
Verma S, Pathak AK, Rahman BMA. Review of Biosensors Based on Plasmonic-Enhanced Processes in the Metallic and Meta-Material-Supported Nanostructures. MICROMACHINES 2024; 15:502. [PMID: 38675314 PMCID: PMC11052336 DOI: 10.3390/mi15040502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Surface plasmons, continuous and cumulative electron vibrations confined to metal-dielectric interfaces, play a pivotal role in aggregating optical fields and energies on nanostructures. This confinement exploits the intrinsic subwavelength nature of their spatial profile, significantly enhancing light-matter interactions. Metals, semiconductors, and 2D materials exhibit plasmonic resonances at diverse wavelengths, spanning from ultraviolet (UV) to far infrared, dictated by their unique properties and structures. Surface plasmons offer a platform for various light-matter interaction mechanisms, capitalizing on the orders-of-magnitude enhancement of the electromagnetic field within plasmonic structures. This enhancement has been substantiated through theoretical, computational, and experimental studies. In this comprehensive review, we delve into the plasmon-enhanced processes on metallic and metamaterial-based sensors, considering factors such as geometrical influences, resonating wavelengths, chemical properties, and computational methods. Our exploration extends to practical applications, encompassing localized surface plasmon resonance (LSPR)-based planar waveguides, polymer-based biochip sensors, and LSPR-based fiber sensors. Ultimately, we aim to provide insights and guidelines for the development of next-generation, high-performance plasmonic technological devices.
Collapse
Affiliation(s)
- Sneha Verma
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Akhilesh Kumar Pathak
- Center for Smart Structures and Materials, Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA;
| | - B. M. Azizur Rahman
- School of Science and Technology, City University of London, London EC1V0HB, UK
| |
Collapse
|
10
|
Hasan J, Bok S. Plasmonic Fluorescence Sensors in Diagnosis of Infectious Diseases. BIOSENSORS 2024; 14:130. [PMID: 38534237 DOI: 10.3390/bios14030130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
The increasing demand for rapid, cost-effective, and reliable diagnostic tools in personalized and point-of-care medicine is driving scientists to enhance existing technology platforms and develop new methods for detecting and measuring clinically significant biomarkers. Humanity is confronted with growing risks from emerging and recurring infectious diseases, including the influenza virus, dengue virus (DENV), human immunodeficiency virus (HIV), Ebola virus, tuberculosis, cholera, and, most notably, SARS coronavirus-2 (SARS-CoV-2; COVID-19), among others. Timely diagnosis of infections and effective disease control have always been of paramount importance. Plasmonic-based biosensing holds the potential to address the threat posed by infectious diseases by enabling prompt disease monitoring. In recent years, numerous plasmonic platforms have risen to the challenge of offering on-site strategies to complement traditional diagnostic methods like polymerase chain reaction (PCR) and enzyme-linked immunosorbent assays (ELISA). Disease detection can be accomplished through the utilization of diverse plasmonic phenomena, such as propagating surface plasmon resonance (SPR), localized SPR (LSPR), surface-enhanced Raman scattering (SERS), surface-enhanced fluorescence (SEF), surface-enhanced infrared absorption spectroscopy, and plasmonic fluorescence sensors. This review focuses on diagnostic methods employing plasmonic fluorescence sensors, highlighting their pivotal role in swift disease detection with remarkable sensitivity. It underscores the necessity for continued research to expand the scope and capabilities of plasmonic fluorescence sensors in the field of diagnostics.
Collapse
Affiliation(s)
- Juiena Hasan
- Department of Electrical and Computer Engineering, Ritchie School of Engineering and Computer Science, University of Denver, Denver, CO 80208, USA
| | - Sangho Bok
- Department of Electrical and Computer Engineering, Ritchie School of Engineering and Computer Science, University of Denver, Denver, CO 80208, USA
| |
Collapse
|
11
|
Ganesh KM, Bhaskar S, Cheerala VSK, Battampara P, Reddy R, Neelakantan SC, Reddy N, Ramamurthy SS. Review of Gold Nanoparticles in Surface Plasmon-Coupled Emission Technology: Effect of Shape, Hollow Nanostructures, Nano-Assembly, Metal-Dielectric and Heterometallic Nanohybrids. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:111. [PMID: 38202566 PMCID: PMC10780701 DOI: 10.3390/nano14010111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Point-of-care (POC) diagnostic platforms are globally employed in modern smart technologies to detect events or changes in the analyte concentration and provide qualitative and quantitative information in biosensing. Surface plasmon-coupled emission (SPCE) technology has emerged as an effective POC diagnostic tool for developing robust biosensing frameworks. The simplicity, robustness and relevance of the technology has attracted researchers in physical, chemical and biological milieu on account of its unique attributes such as high specificity, sensitivity, low background noise, highly polarized, sharply directional, excellent spectral resolution capabilities. In the past decade, numerous nano-fabrication methods have been developed for augmenting the performance of the conventional SPCE technology. Among them the utility of plasmonic gold nanoparticles (AuNPs) has enabled the demonstration of plethora of reliable biosensing platforms. Here, we review the nano-engineering and biosensing applications of AuNPs based on the shape, hollow morphology, metal-dielectric, nano-assembly and heterometallic nanohybrids under optical as well as biosensing competencies. The current review emphasizes the recent past and evaluates the latest advancements in the field to comprehend the futuristic scope and perspectives of exploiting Au nano-antennas for plasmonic hotspot generation in SPCE technology.
Collapse
Affiliation(s)
- Kalathur Mohan Ganesh
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Sri Sathya Sai District, Puttaparthi 515134, India;
| | - Seemesh Bhaskar
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Vijay Sai Krishna Cheerala
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Brindavan Campus, Kadugodi, Bengaluru 560067, India; (V.S.K.C.); (S.C.N.)
| | - Prajwal Battampara
- Center for Incubation Innovation Research and Consultancy, Jyothy Institute of Technology, Thataguni Post, Bengaluru 560109, India; (P.B.); (R.R.); (N.R.)
| | - Roopa Reddy
- Center for Incubation Innovation Research and Consultancy, Jyothy Institute of Technology, Thataguni Post, Bengaluru 560109, India; (P.B.); (R.R.); (N.R.)
| | - Sundaresan Chittor Neelakantan
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Brindavan Campus, Kadugodi, Bengaluru 560067, India; (V.S.K.C.); (S.C.N.)
| | - Narendra Reddy
- Center for Incubation Innovation Research and Consultancy, Jyothy Institute of Technology, Thataguni Post, Bengaluru 560109, India; (P.B.); (R.R.); (N.R.)
| | - Sai Sathish Ramamurthy
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Sri Sathya Sai District, Puttaparthi 515134, India;
| |
Collapse
|
12
|
Laffont E, Valour A, Crespo-Monteiro N, Berini P, Jourlin Y. Performance of Grating Couplers Used in the Optical Switch Configuration. SENSORS (BASEL, SWITZERLAND) 2023; 23:9028. [PMID: 38005416 PMCID: PMC10675289 DOI: 10.3390/s23229028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023]
Abstract
Surface plasmon resonance is an effect widely used for biosensing. Biosensors based on this effect operate in different configurations, including the use of diffraction gratings as couplers. Gratings are highly tunable and are easy to integrate into a fluidic system due to their planar configuration. We discuss the optimization of plasmonic grating couplers for use in a specific sensor configuration based on the optical switch. These gratings present a sinusoidal profile with a high depth/period ratio. Their interaction with a p-polarized light beam results in two significant diffracted orders (the 0th and the -1st), which enable differential measurements cancelling noise due to common fluctuations. The gratings are fabricated by combining laser interference lithography with nanoimprinting in a process that is aligned with the challenges of low-cost mass production. The effects of different grating parameters such as the period, depth and profile are theoretically and experimentally investigated.
Collapse
Affiliation(s)
- Emilie Laffont
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Université de Lyon, Laboratoire Hubert Curien, UMR CNRS 5516, 42000 Saint-Etienne, France; (A.V.); (N.C.-M.); (Y.J.)
| | - Arnaud Valour
- Université de Lyon, Laboratoire Hubert Curien, UMR CNRS 5516, 42000 Saint-Etienne, France; (A.V.); (N.C.-M.); (Y.J.)
| | - Nicolas Crespo-Monteiro
- Université de Lyon, Laboratoire Hubert Curien, UMR CNRS 5516, 42000 Saint-Etienne, France; (A.V.); (N.C.-M.); (Y.J.)
| | - Pierre Berini
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Nexus for Quantum Technologies Institute, Advanced Research Complex, Ottawa, ON K1N 6N5, Canada
| | - Yves Jourlin
- Université de Lyon, Laboratoire Hubert Curien, UMR CNRS 5516, 42000 Saint-Etienne, France; (A.V.); (N.C.-M.); (Y.J.)
| |
Collapse
|
13
|
Romain M, Roman P, Saviot L, Millot N, Boireau W. Inferring the Interfacial Reactivity of Gold Nanoparticles by Surface Plasmon Resonance Measurements. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13058-13067. [PMID: 37674412 DOI: 10.1021/acs.langmuir.3c01365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Gold nanoparticles (GNPs) require a functionalization step in most cases to be suitable for applications. Optimizing this step in order to maintain both the stability and the plasmonic properties of the GNPs is a demanding process. Indeed, multiple analyses are required to get sufficient information on the grafting rate and the stability of the obtained suspension, leading to material and time waste. In this study, we propose to investigate ligand reactivity on a gold surface with surface plasmon resonance (SPR) measurements as a way to simulate the reactivity in GNP suspensions. We consider two thiolated ligands in this work: thioglycolic acid (TA) and 6-mercaptohexanoic acid (MHA). These thiols are grafted using different conditions on GNPs (monitored by optical absorption) and on a gold surface (monitored by SPR) and the grafting efficiency and stability are compared. The same conclusions are reached in both cases regarding the best protocol to implement, namely, the thiol molecules should be introduced in a water solution at a low concentration. This demonstrates the suitability of SPR to predict the reactivity on a GNP surface.
Collapse
Affiliation(s)
- Mélanie Romain
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, Dijon 21078, France
| | - Phoölan Roman
- Université de Franche-Comté, CNRS, Institut Femto-ST, Besançon F-25030, France
| | - Lucien Saviot
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, Dijon 21078, France
| | - Nadine Millot
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université de Bourgogne, BP 47870, Dijon 21078, France
| | - Wilfrid Boireau
- Université de Franche-Comté, CNRS, Institut Femto-ST, Besançon F-25030, France
| |
Collapse
|
14
|
Al-Ashwal NH, Al Soufy KAM, Hamza ME, Swillam MA. Deep Learning for Optical Sensor Applications: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:6486. [PMID: 37514779 PMCID: PMC10386074 DOI: 10.3390/s23146486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Over the past decade, deep learning (DL) has been applied in a large number of optical sensors applications. DL algorithms can improve the accuracy and reduce the noise level in optical sensors. Optical sensors are considered as a promising technology for modern intelligent sensing platforms. These sensors are widely used in process monitoring, quality prediction, pollution, defence, security, and many other applications. However, they suffer major challenges such as the large generated datasets and low processing speeds for these data, including the high cost of these sensors. These challenges can be mitigated by integrating DL systems with optical sensor technologies. This paper presents recent studies integrating DL algorithms with optical sensor applications. This paper also highlights several directions for DL algorithms that promise a considerable impact on use for optical sensor applications. Moreover, this study provides new directions for the future development of related research.
Collapse
Affiliation(s)
- Nagi H Al-Ashwal
- Department of Physics, The American University in Cairo, New Cairo 11835, Egypt
- Department of Electrical Engineering, Ibb University, Ibb City 00967, Yemen
| | - Khaled A M Al Soufy
- Department of Physics, The American University in Cairo, New Cairo 11835, Egypt
- Department of Electrical Engineering, Ibb University, Ibb City 00967, Yemen
| | - Mohga E Hamza
- Department of Physics, The American University in Cairo, New Cairo 11835, Egypt
| | - Mohamed A Swillam
- Department of Physics, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
15
|
Moreira P, Costa J, Villa C, Mafra I, Brandão ATSC, Dias C, Silva AF, Pereira CM, Costa R. Plasmonic genosensor for detecting hazelnut Cor a 14-encoding gene for food allergen monitoring. Anal Chim Acta 2023; 1259:341168. [PMID: 37100473 DOI: 10.1016/j.aca.2023.341168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/14/2023] [Accepted: 03/30/2023] [Indexed: 04/04/2023]
Abstract
A plasmonic nanostructure was constructed as a biorecognition element coupled to an optical sensing platform in sandwich format, targeting the hazelnut Cor a 14 allergen-encoding gene. The analytical performance of the genosensor presented a linear dynamic range between 100 amol L-1 and 1 nmol L-1, a limit of detection (LOD) < 19.9 amol L-1, and a sensitivity of 13.4 ± 0.6 m°. The genosensor was successfully hybridized with hazelnut PCR products, tested with model foods, and further validated by real-time PCR. It reached a LOD <0.001% (10 mg kg-1) of hazelnut in wheat material (corresponding to 1.6 mg kg-1 of protein) and a sensitivity of -17.2 ± 0.5 m° for a linear range of 0.001%-1%. Herein, a new genosensing approach is proposed as a highly sensitive and specific alternative tool with potential application in monitoring hazelnut as an allergenic food, protecting the health of sensitized/allergic individuals.
Collapse
Affiliation(s)
- Patrícia Moreira
- Instituto de Ciências Moleculares/Centro de Investigação em Química da Universidade do Porto (IMS/CIQUP), Faculdade de Ciências da Universidade do Porto, Departamento de Química e Bioquímica, Rua do Campo Alegre 687, 4169-007, Porto, Portugal
| | - Joana Costa
- REQUIMTE-LAQV/Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, Porto, Portugal
| | - Caterina Villa
- REQUIMTE-LAQV/Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, Porto, Portugal
| | - Isabel Mafra
- REQUIMTE-LAQV/Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, Porto, Portugal
| | - Ana T S C Brandão
- Instituto de Ciências Moleculares/Centro de Investigação em Química da Universidade do Porto (IMS/CIQUP), Faculdade de Ciências da Universidade do Porto, Departamento de Química e Bioquímica, Rua do Campo Alegre 687, 4169-007, Porto, Portugal
| | - Catarina Dias
- Instituto de Ciências Moleculares/Centro de Investigação em Química da Universidade do Porto (IMS/CIQUP), Faculdade de Ciências da Universidade do Porto, Departamento de Química e Bioquímica, Rua do Campo Alegre 687, 4169-007, Porto, Portugal
| | - A Fernando Silva
- Instituto de Ciências Moleculares/Centro de Investigação em Química da Universidade do Porto (IMS/CIQUP), Faculdade de Ciências da Universidade do Porto, Departamento de Química e Bioquímica, Rua do Campo Alegre 687, 4169-007, Porto, Portugal
| | - Carlos M Pereira
- Instituto de Ciências Moleculares/Centro de Investigação em Química da Universidade do Porto (IMS/CIQUP), Faculdade de Ciências da Universidade do Porto, Departamento de Química e Bioquímica, Rua do Campo Alegre 687, 4169-007, Porto, Portugal
| | - Renata Costa
- Instituto de Ciências Moleculares/Centro de Investigação em Química da Universidade do Porto (IMS/CIQUP), Faculdade de Ciências da Universidade do Porto, Departamento de Química e Bioquímica, Rua do Campo Alegre 687, 4169-007, Porto, Portugal.
| |
Collapse
|
16
|
Bhaskar S. Biosensing Technologies: A Focus Review on Recent Advancements in Surface Plasmon Coupled Emission. MICROMACHINES 2023; 14:mi14030574. [PMID: 36984981 PMCID: PMC10054051 DOI: 10.3390/mi14030574] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 05/14/2023]
Abstract
In the past decade, novel nano-engineering protocols have been actively synergized with fluorescence spectroscopic techniques to yield higher intensity from radiating dipoles, through the process termed plasmon-enhanced fluorescence (PEF). Consequently, the limit of detection of analytes of interest has been dramatically improvised on account of higher sensitivity rendered by augmented fluorescence signals. Recently, metallic thin films sustaining surface plasmon polaritons (SPPs) have been creatively hybridized with such PEF platforms to realize a substantial upsurge in the global collection efficiency in a judicious technology termed surface plasmon-coupled emission (SPCE). While the process parameters and conditions to realize optimum coupling efficiency between the radiating dipoles and the plasmon polaritons in SPCE framework have been extensively discussed, the utility of disruptive nano-engineering over the SPCE platform and analogous interfaces such as 'ferroplasmon-on-mirror (FPoM)' as well as an alternative technology termed 'photonic crystal-coupled emission (PCCE)' have been seldom reviewed. In light of these observations, in this focus review, the myriad nano-engineering protocols developed over the SPCE, FPoM and PCCE platform are succinctly captured, presenting an emphasis on the recently developed cryosoret nano-assembly technology for photo-plasmonic hotspot generation (first to fourth). These technologies and associated sensing platforms are expected to ameliorate the current biosensing modalities with better understanding of the biophysicochemical processes and related outcomes at advanced micro-nano-interfaces. This review is hence envisaged to present a broad overview of the latest developments in SPCE substrate design and development for interdisciplinary applications that are of relevance in environmental as well as biological heath monitoring.
Collapse
Affiliation(s)
- Seemesh Bhaskar
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
17
|
Khasanov IS, Knyazev BA, Lobastov SA, Anisimov AV, Nikitin PA, Kameshkov OE. Optical Characterization of Thin Films by Surface Plasmon Resonance Spectroscopy Using an Acousto-Optic Tunable Filter. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1820. [PMID: 36902935 PMCID: PMC10004554 DOI: 10.3390/ma16051820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The paper presents the application of the acousto-optic tunable filter (AOTF) in surface plasmon resonance (SPR) spectroscopy to measure the optical thickness of thin dielectric coatings. The technique presented uses combined angular and spectral interrogation modes to obtain the reflection coefficient under the condition of SPR. Surface electromagnetic waves were excited in the Kretschmann geometry, with the AOTF serving as a monochromator and polarizer of light from a white broadband radiation source. The experiments highlighted the high sensitivity of the method and the lower amount of noise in the resonance curves compared with the laser light source. This optical technique can be implemented for nondestructive testing in the production of thin films in not only the visible, but also the infrared and terahertz ranges.
Collapse
Affiliation(s)
- Ildus Sh. Khasanov
- Scientific and Technological Centre of Unique Instrumentation RAS, 117342 Moscow, Russia
| | - Boris A. Knyazev
- Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia
| | - Sergey A. Lobastov
- Scientific and Technological Centre of Unique Instrumentation RAS, 117342 Moscow, Russia
| | - Alexander V. Anisimov
- Scientific and Technological Centre of Unique Instrumentation RAS, 117342 Moscow, Russia
| | - Pavel A. Nikitin
- Scientific and Technological Centre of Unique Instrumentation RAS, 117342 Moscow, Russia
| | - Oleg E. Kameshkov
- Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
18
|
Optoplasmonic biosensor for lung cancer telediagnosis: Design and simulation analysis. SENSORS INTERNATIONAL 2023. [DOI: 10.1016/j.sintl.2023.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
19
|
Barrios CA, Mirea T, Represa MH. A Self-Referenced Refractive Index Sensor Based on Gold Nanoislands. SENSORS (BASEL, SWITZERLAND) 2022; 23:66. [PMID: 36616664 PMCID: PMC9824277 DOI: 10.3390/s23010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
We report on a self-referenced refractive index optical sensor based on Au nanoislands. The device consists of a random distribution of Au nanoislands formed by dewetting on a planar SiO2/metal Fabry-Pérot cavity. Experimental and theoretical studies of the reflectance of this configuration reveal that its spectral response results from a combination of two resonances: a localized surface plasmon resonance (LSPR) associated to the Au nanoislands and the lowest-order anti-symmetric resonance of the Fabry-Pérot cavity. When the device is immersed in different fluids, the LSPR contribution provides high sensitivity to refractive index variations of the fluid, whereas those refractive index changes have little impact on the Fabry-Pérot resonance wavelength, allowing its use as a reference signal. The self-referenced sensor exhibits a spectral sensitivity of 212 nm/RIU (RIU: refractive index unit), which is larger than those of similar structures, and an intensity sensitivity of 4.9 RIU-1. The proposed chip-based architecture and the low cost and simplicity of the Au nanoisland synthesis procedure make the demonstrated sensor a promising self-referenced plasmonic sensor for compact biosensing optical platforms based on reflection mode operation.
Collapse
Affiliation(s)
- Carlos Angulo Barrios
- Department of Photonics and Bioengineering, CEMDATIC, ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Teona Mirea
- Department of Electronic Engineering, CEMDATIC, ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Miguel Huerga Represa
- Department of Photonics and Bioengineering, CEMDATIC, ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| |
Collapse
|
20
|
Mallegni N, Molinari G, Ricci C, Lazzeri A, La Rosa D, Crivello A, Milazzo M. Sensing Devices for Detecting and Processing Acoustic Signals in Healthcare. BIOSENSORS 2022; 12:835. [PMID: 36290973 PMCID: PMC9599683 DOI: 10.3390/bios12100835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Acoustic signals are important markers to monitor physiological and pathological conditions, e.g., heart and respiratory sounds. The employment of traditional devices, such as stethoscopes, has been progressively superseded by new miniaturized devices, usually identified as microelectromechanical systems (MEMS). These tools are able to better detect the vibrational content of acoustic signals in order to provide a more reliable description of their features (e.g., amplitude, frequency bandwidth). Starting from the description of the structure and working principles of MEMS, we provide a review of their emerging applications in the healthcare field, discussing the advantages and limitations of each framework. Finally, we deliver a discussion on the lessons learned from the literature, and the open questions and challenges in the field that the scientific community must address in the near future.
Collapse
Affiliation(s)
- Norma Mallegni
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy
| | - Giovanna Molinari
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy
| | - Claudio Ricci
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy
| | - Davide La Rosa
- ISTI-CNR, Institute of Information Science and Technologies, 56124 Pisa, Italy
| | - Antonino Crivello
- ISTI-CNR, Institute of Information Science and Technologies, 56124 Pisa, Italy
| | - Mario Milazzo
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy
| |
Collapse
|
21
|
Butt MA, Kazanskiy NL, Khonina SN. Advances in Waveguide Bragg Grating Structures, Platforms, and Applications: An Up-to-Date Appraisal. BIOSENSORS 2022; 12:497. [PMID: 35884300 PMCID: PMC9313028 DOI: 10.3390/bios12070497] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022]
Abstract
A Bragg grating (BG) is a one-dimensional optical device that may reflect a specific wavelength of light while transmitting all others. It is created by the periodic fluctuation of the refractive index in the waveguide (WG). The reflectivity of a BG is specified by the index modulation profile. A Bragg grating is a flexible optical filter that has found broad use in several scientific and industrial domains due to its straightforward construction and distinctive filtering capacity. WG BGs are also widely utilized in sensing applications due to their easy integration and high sensitivity. Sensors that utilize optical signals for sensing have several benefits over conventional sensors that use electric signals to achieve detection, including being lighter, having a strong ability to resist electromagnetic interference, consuming less power, operating over a wider frequency range, performing consistently, operating at a high speed, and experiencing less loss and crosstalk. WG BGs are simple to include in chips and are compatible with complementary metal-oxide-semiconductor (CMOS) manufacturing processes. In this review, WG BG structures based on three major optical platforms including semiconductors, polymers, and plasmonics are discussed for filtering and sensing applications. Based on the desired application and available fabrication facilities, the optical platform is selected, which mainly regulates the device performance and footprint.
Collapse
Affiliation(s)
- Muhammad A. Butt
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warszawa, Poland
- Samara National Research University, 443086 Samara, Russia; (N.L.K.); (S.N.K.)
| | - Nikolay L. Kazanskiy
- Samara National Research University, 443086 Samara, Russia; (N.L.K.); (S.N.K.)
- IPSI RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| | - Svetlana N. Khonina
- Samara National Research University, 443086 Samara, Russia; (N.L.K.); (S.N.K.)
- IPSI RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| |
Collapse
|