1
|
Zou W, Deng S, Chen X, Ruan J, Wang H, Zhan W, Wang J, Liu Z, Yan Z. TMEM63B functions as a mammalian hyperosmolar sensor for thirst. Neuron 2025:S0896-6273(25)00130-8. [PMID: 40107268 DOI: 10.1016/j.neuron.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/28/2025] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
Thirst drives animals to reinstate water homeostasis by fluid intake. An increase in blood osmolality is thought to induce thirst by activating a hyperosmolar sensor expressed in the subfornical organ (SFO), but the molecular identity of this sensor remains elusive. Here, we provide behavioral and functional evidence to show that TMEM63B functions as a mammalian hyperosmolar sensor for thirst in SFO neurons. First, we showed that TMEM63B is expressed in SFO excitatory neurons and required for the neuronal responses to hypertonic stimulation. More importantly, heterologously expressed TMEM63B is activated by hypertonic stimuli, and point mutations can alter the reversal potential of the channel. Additionally, purified TMEM63B in liposomes exhibits osmolarity-gated currents. Finally, Tmem63b knockout mice have profound deficits in thirst, and deleting TMEM63B within SFO neurons recapitulated this phenotype. Taken together, these results provide a molecular basis for thirst and suggest that TMEM63B is a mammalian hyperosmolar sensor for thirst.
Collapse
Affiliation(s)
- Wenjie Zou
- Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing, China; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Siqi Deng
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China; Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xingyu Chen
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China; Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Jiamin Ruan
- Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing, China; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Huize Wang
- Institute for Medical Physiology, Chinese Institutes for Medical Research, Beijing, China
| | - Wuqiang Zhan
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jingxin Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhiqiang Yan
- Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing, China; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China; Institute for Medical Physiology, Chinese Institutes for Medical Research, Beijing, China.
| |
Collapse
|
2
|
Su R, Wang Y, Cui P, Tian G, Qin Y. Isolation of OSCAs in wheat and over-expression of TaOSCA14D increased salt stress tolerance. JOURNAL OF PLANT PHYSIOLOGY 2025; 306:154449. [PMID: 39946937 DOI: 10.1016/j.jplph.2025.154449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 03/01/2025]
Abstract
Salt stress is a major environmental factor that limits plant growth and productivity. In the early stage of salt stress, the intracellular Ca2+ concentration elevates, thereby triggering osmotic stress tolerance signaling pathway. OSCAs encode hyperosmotic gated calcium channels and function as osmotic sensors in Arabidopsis. But the functions of OSCAs in wheat responding to salt stress have not been elucidated. In this study, we identified 42 TaOSCAs and examined their expression pattern in 12 tissues and under salt stress. Further, the salt inducible TaOSCA14D was selected for functional study in response to salt stress. TaOSCA14D was induced by NaCl, PEG, exogenous ABA treatment. Over-expression of TaOSCA14D in Arabidopsis and wheat increased salt stress tolerance. Salt stress related marker genes SnRK2s, ABFs, RD29B were higher expressed in TaOSCA14D transgenic plants than in the wild type under NaCl treatment. Furthermore, the soluble sugar and proline content were higher in transgenic plants than in wild-type ones. Over-expression of TaOSCA14D promoted flowering, decreased spike length and the grain number of per spike. All these results shed some light on the function of OSCAs in tolerance to salt stress and its roles in agronomic trait in wheat.
Collapse
Affiliation(s)
- Ruiping Su
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, Shandong Province, China
| | - Yuning Wang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, Shandong Province, China
| | - Ping Cui
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, Shandong Province, China
| | - Geng Tian
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, Shandong Province, China
| | - Yuxiang Qin
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, Shandong Province, China.
| |
Collapse
|
3
|
Wang X, Liu X, Su Y, Shen H. Rice Responses to Abiotic Stress: Key Proteins and Molecular Mechanisms. Int J Mol Sci 2025; 26:896. [PMID: 39940666 PMCID: PMC11817427 DOI: 10.3390/ijms26030896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
The intensification of global climate change and industrialization has exacerbated abiotic stresses on crops, particularly rice, posing significant threats to food security and human health. The mechanisms by which rice responds to these stresses are complex and interrelated. This review aims to provide a comprehensive understanding of the molecular mechanisms underlying rice's response to various abiotic stresses, including drought, salinity, extreme temperatures, and heavy metal pollution. We emphasize the molecular mechanisms and structural roles of key proteins involved in these stress responses, such as the roles of SLAC1 and QUAC1 in stomatal regulation, HKT and SOS proteins in salinity stress, heat shock proteins (HSPs) and heat stress transcription factors (HSFs) in temperature stress, and Nramp and ZIP transport proteins in response to heavy metal stress. This review elucidates the complex response networks of rice to various abiotic stresses, highlighting the key proteins and their related molecular mechanisms, which may further help to improve the strategies of molecular breeding.
Collapse
Affiliation(s)
- Xiaohui Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China;
| | - Xuelei Liu
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou 310024, China;
| | - Yonglin Su
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China;
| | - Huaizong Shen
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou 310024, China;
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| |
Collapse
|
4
|
Pang Y, Zheng K, Min Q, Wang Y, Xue X, Li W, Zhao H, Qiao F, Han S. Long Noncoding RNAs in Response to Hyperosmolarity Stress, but Not Salt Stress, Were Mainly Enriched in the Rice Roots. Int J Mol Sci 2024; 25:6226. [PMID: 38892412 PMCID: PMC11172603 DOI: 10.3390/ijms25116226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Due to their immobility and possession of underground parts, plants have evolved various mechanisms to endure and adapt to abiotic stresses such as extreme temperatures, drought, and salinity. However, the contribution of long noncoding RNAs (lncRNAs) to different abiotic stresses and distinct rice seedling parts remains largely uncharacterized beyond the protein-coding gene (PCG) layer. Using transcriptomics and bioinformatics methods, we systematically identified lncRNAs and characterized their expression patterns in the roots and shoots of wild type (WT) and ososca1.1 (reduced hyperosmolality-induced [Ca2+]i increase in rice) seedlings under hyperosmolarity and salt stresses. Here, 2937 candidate lncRNAs were identified in rice seedlings, with intergenic lncRNAs representing the largest category. Although the detectable sequence conservation of lncRNAs was low, we observed that lncRNAs had more orthologs within the Oryza. By comparing WT and ososca1.1, the transcription level of OsOSCA1.1-related lncRNAs in roots was greatly enhanced in the face of hyperosmolality stress. Regarding regulation mode, the co-expression network revealed connections between trans-regulated lncRNAs and their target PCGs related to OsOSCA1.1 and its mediation of hyperosmolality stress sensing. Interestingly, compared to PCGs, the expression of lncRNAs in roots was more sensitive to hyperosmolarity stress than to salt stress. Furthermore, OsOSCA1.1-related hyperosmolarity stress-responsive lncRNAs were enriched in roots, and their potential cis-regulated genes were associated with transcriptional regulation and signaling transduction. Not to be ignored, we identified a motif-conserved and hyperosmolarity stress-activated lncRNA gene (OSlncRNA), speculating on its origin and evolutionary history in Oryza. In summary, we provide a global perspective and a lncRNA resource to understand hyperosmolality stress sensing in rice roots, which helps to decode the complex molecular networks involved in plant sensing and adaptation to stressful environments.
Collapse
Affiliation(s)
- Yanrong Pang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Kaifeng Zheng
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Qinyue Min
- School of Life Sciences, Qinghai Normal University, Xining 810008, China;
| | - Yinxing Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Xiuhua Xue
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Wanjie Li
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Feng Qiao
- School of Life Sciences, Qinghai Normal University, Xining 810008, China;
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
- Academy of Plateau Science and Sustainability of the People’s Government of Qinghai Province & Beijing Normal University, Qinghai Normal University, Xining 810008, China
| |
Collapse
|
5
|
Lv G, Jin X, Wang H, Wang Y, Wu Q, Wu H, Jiang F, Ma Y, An Y, Zhang M, Guo Y, Li S. Cloning a novel reduced-height ( Rht) gene TaOSCA1.4 from a QTL in wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1381243. [PMID: 38817937 PMCID: PMC11137288 DOI: 10.3389/fpls.2024.1381243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024]
Abstract
Reducing plant height (PH) is one of the core contents of the "Green Revolution", which began in the 1960s in wheat. A number of 27 reduced-height (Rht) genes have been identified and a great number of quantitative trait loci (QTLs) for PH have been mapped on all 21 chromosomes. Nonetheless, only several genes regulated PH have been cloned. In this study, we found the interval of QTL QPh-1B included an EST-SSR marker swes1079. According to the sequence of swes1079, we cloned the TaOSCA1.4 gene. We developed a CAPS marker to analyze the variation across a natural population. The result showed that the PH was significantly different between the two haplotypes of TaOSCA1.4-1B under most of the 12 environments and the average values of irrigation and rainfed conditions. This result further demonstrated that TaOSCA1.4 was associated with PH. Then, we validated the TaOSCA1.4 via RNAi technology. The average PHs of the wild-type (WT), RNAi lines 1 (Ri-1) and 2 (Ri-2) were 94.6, 83.6 and 79.2 cm, respectively, with significant differences between the WT and Ri-1 and Ri-2. This result indicated that the TaOSCA1.4 gene controls PH. TaOSCA1.4 is a constitutively expressed gene and its protein localizes to the cell membrane. TaOSCA1.4 gene is a member of the OSCA gene family, which regulates intracellular Ca2+ concentration. We hypothesized that knock down mutants of TaOSCA1.4 gene reduced regulatory ability of Ca2+, thus reducing the PH. Furthermore, the cell lengths of the knock down mutants are not significantly different than that of WT. We speculate that TaOSCA1.4 gene is not directly associated with gibberellin (GA), which should be a novel mechanism for a wheat Rht gene.
Collapse
Affiliation(s)
- Guangde Lv
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
- Tai’an Academy of Agricultural Science, Tai’an, China
| | - Xuemei Jin
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
- Rizhao Academy of Agricultural Science, Rizhao, China
| | - Hui Wang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Yijun Wang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Qun Wu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Haimeng Wu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | | | - Yanming Ma
- Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yanrong An
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Mingxia Zhang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Ying Guo
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Sishen Li
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
6
|
Fu H, Yang Y. How Plants Tolerate Salt Stress. Curr Issues Mol Biol 2023; 45:5914-5934. [PMID: 37504290 PMCID: PMC10378706 DOI: 10.3390/cimb45070374] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Soil salinization inhibits plant growth and seriously restricts food security and agricultural development. Excessive salt can cause ionic stress, osmotic stress, and ultimately oxidative stress in plants. Plants exclude excess salt from their cells to help maintain ionic homeostasis and stimulate phytohormone signaling pathways, thereby balancing growth and stress tolerance to enhance their survival. Continuous innovations in scientific research techniques have allowed great strides in understanding how plants actively resist salt stress. Here, we briefly summarize recent achievements in elucidating ionic homeostasis, osmotic stress regulation, oxidative stress regulation, and plant hormonal responses under salt stress. Such achievements lay the foundation for a comprehensive understanding of plant salt-tolerance mechanisms.
Collapse
Affiliation(s)
- Haiqi Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Tianjin Key Laboratory of Crop Genetics and Breeding, Institute of Crop Sciences, Tianjin Academy of Agricultural Sciences, Tianjin 300380, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Sustek-Sánchez F, Rognli OA, Rostoks N, Sõmera M, Jaškūnė K, Kovi MR, Statkevičiūtė G, Sarmiento C. Improving abiotic stress tolerance of forage grasses - prospects of using genome editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1127532. [PMID: 36824201 PMCID: PMC9941169 DOI: 10.3389/fpls.2023.1127532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Due to an increase in the consumption of food, feed, and fuel and to meet global food security needs for the rapidly growing human population, there is a necessity to obtain high-yielding crops that can adapt to future climate changes. Currently, the main feed source used for ruminant livestock production is forage grasses. In temperate climate zones, perennial grasses grown for feed are widely distributed and tend to suffer under unfavorable environmental conditions. Genome editing has been shown to be an effective tool for the development of abiotic stress-resistant plants. The highly versatile CRISPR-Cas system enables increasingly complex modifications in genomes while maintaining precision and low off-target frequency mutations. In this review, we provide an overview of forage grass species that have been subjected to genome editing. We offer a perspective view on the generation of plants resilient to abiotic stresses. Due to the broad factors contributing to these stresses the review focuses on drought, salt, heat, and cold stresses. The application of new genomic techniques (e.g., CRISPR-Cas) allows addressing several challenges caused by climate change and abiotic stresses for developing forage grass cultivars with improved adaptation to the future climatic conditions. Genome editing will contribute towards developing safe and sustainable food systems.
Collapse
Affiliation(s)
- Ferenz Sustek-Sánchez
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Odd Arne Rognli
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Nils Rostoks
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, Riga, Latvia
| | - Merike Sõmera
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kristina Jaškūnė
- Laboratory of Genetics and Physiology, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | - Mallikarjuna Rao Kovi
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Gražina Statkevičiūtė
- Laboratory of Genetics and Physiology, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | - Cecilia Sarmiento
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
8
|
Liu C, Wang H, Zhang Y, Cheng H, Hu Z, Pei ZM, Li Q. Systematic Characterization of the OSCA Family Members in Soybean and Validation of Their Functions in Osmotic Stress. Int J Mol Sci 2022; 23:ijms231810570. [PMID: 36142482 PMCID: PMC9500692 DOI: 10.3390/ijms231810570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 12/31/2022] Open
Abstract
Since we discovered OSCA1, a hyperosmolarity-gated calcium-permeable channel that acted as an osmosensor in Arabidopsis, the OSCA family has been identified genome-wide in several crops, but only a few OSCA members' functions have been experimentally demonstrated. Osmotic stress seriously restricts the yield and quality of soybean. Therefore, it is essential to decipher the molecular mechanism of how soybean responds to osmotic stress. Here, we first systematically studied and experimentally demonstrated the role of OSCA family members in the osmotic sensing of soybean. Phylogenetic relationships, gene structures, protein domains and structures analysis revealed that 20 GmOSCA members were divided into four clades, of which members in the same cluster may have more similar functions. In addition, GmOSCA members in clusters III and IV may be functionally redundant and diverged from those in clusters I and II. Based on the spatiotemporal expression patterns, GmOSCA1.6, GmOSCA2.1, GmOSCA2.6, and GmOSCA4.1 were extremely low expressed or possible pseudogenes. The remaining 16 GmOSCA genes were heterologously overexpressed in an Arabidopsis osca1 mutant, to explore their functions. Subcellular localization showed that most GmOSCA members could localize to the plasma membrane (PM). Among 16 GmOSCA genes, only overexpressing GmOSCA1.1, GmOSCA1.2, GmOSCA1.3, GmOSCA1.4, and GmOSCA1.5 in cluster I could fully complement the reduced hyperosmolality-induced [Ca2+]i increase (OICI) in osca1. The expression profiles of GmOSCA genes against osmotic stress demonstrated that most GmOSCA genes, especially GmOSCA1.1, GmOSCA1.2, GmOSCA1.3, GmOSCA1.4, GmOSCA1.5, GmOSCA3.1, and GmOSCA3.2, strongly responded to osmotic stress. Moreover, overexpression of GmOSCA1.1, GmOSCA1.2, GmOSCA1.3, GmOSCA1.4, GmOSCA1.5, GmOSCA3.1, and GmOSCA3.2 rescued the drought-hypersensitive phenotype of osca1. Our findings provide important clues for further studies of GmOSCA-mediated calcium signaling in the osmotic sensing of soybean and contribute to improving soybean drought tolerance through genetic engineering and molecular breeding.
Collapse
Affiliation(s)
- Congge Liu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Hong Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311401, China
| | - Yu Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Haijing Cheng
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhangli Hu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhen-Ming Pei
- Department of Biology, Duke University, Durham, NC 27708, USA
- Correspondence: (Z.-M.P.); or (Q.L.)
| | - Qing Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311401, China
- Correspondence: (Z.-M.P.); or (Q.L.)
| |
Collapse
|
9
|
Yang S, Zhu C, Chen J, Zhao J, Hu Z, Liu S, Zhou Y. Identification and Expression Profile Analysis of the OSCA Gene Family Related to Abiotic and Biotic Stress Response in Cucumber. BIOLOGY 2022; 11:biology11081134. [PMID: 36009761 PMCID: PMC9404750 DOI: 10.3390/biology11081134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Hyperosmolality-gated calcium-permeable channels (OSCAs) are calcium nonselective cation channel proteins involved in multiple biological processes. In this work, the members of the OSCA family in cucumber were systematically analyzed, including their sequence characteristics, phylogenetic relationships, conserved motifs, gene structures, promoter regions, and tissue expression patterns. In addition, the effects of different osmotic-related abiotic stresses [salt (NaCl), drought (PEG), and abscisic acid (ABA)] and three biotic stresses [powdery mildew (PM), downy mildew (DM), and root-knot nematode (RKN)] on OSCA family genes were also determined. The results indicated that cucumber OSCA genes play important roles in response to osmotic-related abiotic stresses and pathogen invasion. Overall, this study lays a foundation for research on the biological function and evolutionary process of OSCA family genes in cucumber. Abstract Calcium ions are important second messengers, playing an important role in the signal transduction pathways. Hyperosmolality gated calcium-permeable channels (OSCA) gene family members play critical modulating roles in response to osmotic-related abiotic stress as well as other abiotic and biotic stresses, which has been reported in many plant species such as Arabidopsis, rice, maize, and wheat. However, there has been no report about the identification and expression profile of the OSCA genes in cucumber. In this study, a total of nine OSCA genes were identified, which are unevenly distributed on the six chromosomes of cucumber. Phylogenetic analysis revealed that the OSCAs of cucumber, Arabidopsis, rice and maize were clustered into four clades. The motif arrangement of CsOSCAs was strongly conserved, and the CsOSCA genes in each group had similar genetic structure. A total of 11 and 10 types of cis-elements related to hormone and stress, respectively, were identified in the promoter regions of CsOSCA genes. Gene expression analysis indicated that the CsOSCA genes have different expression patterns in various tissues, and some of them were regulated by three osmotic-related abiotic stresses (salt, drought and ABA) and three biotic stresses (powdery mildew, downy mildew, and root-knot nematode). As the first genome-wide identification and characterization of the OSCA gene family in cucumber, this study lays a foundation for research on the biological function and evolutionary process of this gene family, which is of great significance for exploiting stress resistant cucumber varieties.
Collapse
Affiliation(s)
- Shuting Yang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (S.Y.); (C.Z.); (J.C.); (J.Z.); (Z.H.)
| | - Chuxia Zhu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (S.Y.); (C.Z.); (J.C.); (J.Z.); (Z.H.)
| | - Jingju Chen
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (S.Y.); (C.Z.); (J.C.); (J.Z.); (Z.H.)
| | - Jindong Zhao
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (S.Y.); (C.Z.); (J.C.); (J.Z.); (Z.H.)
| | - Zhaoyang Hu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (S.Y.); (C.Z.); (J.C.); (J.Z.); (Z.H.)
| | - Shiqiang Liu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (S.Y.); (C.Z.); (J.C.); (J.Z.); (Z.H.)
- Correspondence: (S.L.); (Y.Z.)
| | - Yong Zhou
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; (S.Y.); (C.Z.); (J.C.); (J.Z.); (Z.H.)
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- Correspondence: (S.L.); (Y.Z.)
| |
Collapse
|