1
|
Zhao Z, Zhu Y, Wan D. Exercise and tissue fibrosis: recent advances in therapeutic potential and molecular mechanisms. Front Endocrinol (Lausanne) 2025; 16:1557797. [PMID: 40182630 PMCID: PMC11965137 DOI: 10.3389/fendo.2025.1557797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Tissue fibrosis represents an aberrant repair process, occurring because of prolonged injury, sustained inflammatory response, or metabolic disorders. It is characterized by an excessive accumulation of extracellular matrix (ECM), resulting in tissue hardening, structural remodeling, and loss of function. This pathological phenomenon is a common feature in the end stage of numerous chronic diseases. Despite the advent of novel therapeutic modalities, including antifibrotic agents, these have only modest efficacy in reversing established fibrosis and are associated with adverse effects. In recent years, a growing body of research has demonstrated that exercise has significant benefits and potential in the treatment of tissue fibrosis. The anti-fibrotic effects of exercise are mediated by multiple mechanisms, including direct inhibition of fibroblast activation, reduction in the expression of pro-fibrotic factors such as transforming growth factor-β (TGF-β) and slowing of collagen deposition. Furthermore, exercise has been demonstrated to assist in maintaining the dynamic equilibrium of tissue repair, thereby indirectly reducing tissue damage and fibrosis. It can also help maintain the dynamic balance of tissue repair by improving metabolic disorders, exerting anti-inflammatory and antioxidant effects, regulating cellular autophagy, restoring mitochondrial function, activating stem cell activity, and reducing cell apoptosis, thereby indirectly alleviating tissue. This paper presents a review of the therapeutic potential of exercise and its underlying mechanisms for the treatment of a range of tissue fibrosis, including cardiac, pulmonary, renal, hepatic, and skeletal muscle. It offers a valuable reference point for non-pharmacological intervention strategies for the comprehensive treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Zheng Zhao
- School of Physical Education, Anyang Normal University, Anyang, Henan, China
| | - Yongjia Zhu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Dongfeng Wan
- School of Health, Shanghai Normal University Tianhua College, Shanghai, China
| |
Collapse
|
2
|
de Faria MHS, Barroso LSS, Souza-Gomes AF, de Barros JLVM, Kakehasi AM, Vieira ELM, Silva ACSE, Nunes-Silva A. Strength Training can Modulate Urinary Adipokine Levels in Healthy Young Males. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2025; 18:107-118. [PMID: 39916794 PMCID: PMC11798553 DOI: 10.70252/fxqy9475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Adipose tissue stores energy in fat-rich adipocytes, which can produce and release several adipokines and modulate body metabolism. Exercise may induce adipokine production in adipocytes; however, the relationship between the two remains unclear. Few studies have shown the relationship between adipokines and strength training. Thus, we aimed to evaluate the acute and chronic effects of strength training (ST) on urinary adiponectin, leptin, and resistin levels. Twelve untrained young men (23.42 ± 2.67 years) were included in this study. Body composition was evaluated at baseline and after completing of the training protocol using densitometry. Training protocol consisted of three exercises with three sets of 65% of one-repetition maximum (1MR) with a pause of 90 s between sets, each exercise lasting 5 s (2 s concentric / 3 s eccentric). The sessions were carried out three times a week for 10 weeks. Urine was collected during the pre- and post-training in the first and 30th session. Adipokine levels were determined by ELISA. Urinary levels of leptin acutely increased after the first ST session, and after the last ST session. Chronic changes in the leptin levels were also found when comparing the values before the last ST and before the first ST session. Urinary adiponectin levels changed in the comparison of values before and after the last session. There was a significant increase in the adiponectin levels when comparing values after the first and last ST sessions. The levels of resistin chronically increased. Strength training can induce acute and chronic changes in urinary levels of adipokines.
Collapse
Affiliation(s)
- Marcelo Henrique Salviano de Faria
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Laboratório de Inflamação e Imunologia do Exercício, Departamento de Educação Física e Esportes, Escola de Educação Física da Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Lucélia Scarabeli Silva Barroso
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Laboratório de Inflamação e Imunologia do Exercício, Departamento de Educação Física e Esportes, Escola de Educação Física da Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Antonio Felipe Souza-Gomes
- Laboratório de Inflamação e Imunologia do Exercício, Departamento de Educação Física e Esportes, Escola de Educação Física da Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - João Luís Vieira Monteiro de Barros
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Adriana Maria Kakehasi
- Departamento do Aparelho Locomotor, Faculdade de Medicina, Universidade Federal de Minas Gerais, Brazil
| | - Erica Leandro Marciano Vieira
- Centre for Addiction and Mental Health, Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Ana Cristina Simões E Silva
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Albená Nunes-Silva
- Laboratório de Inflamação e Imunologia do Exercício, Departamento de Educação Física e Esportes, Escola de Educação Física da Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| |
Collapse
|
3
|
Jeyaraman N, Shrivastava S, Ravi VR, Nallakumarasamy A, Pundkar A, Jeyaraman M. Understanding and controlling the variables for stromal vascular fraction therapy. World J Stem Cells 2024; 16:784-798. [PMID: 39219728 PMCID: PMC11362852 DOI: 10.4252/wjsc.v16.i8.784] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/13/2024] [Accepted: 07/25/2024] [Indexed: 08/26/2024] Open
Abstract
In regenerative medicine, the isolation of mesenchymal stromal cells (MSCs) from the adipose tissue's stromal vascular fraction (SVF) is a critical area of study. Our review meticulously examines the isolation process of MSCs, starting with the extraction of adipose tissue. The choice of liposuction technique, anatomical site, and immediate processing are essential to maintain cell functionality. We delve into the intricacies of enzymatic digestion, emphasizing the fine-tuning of enzyme concentrations to maximize cell yield while preventing harm. The review then outlines the filtration and centrifugation techniques necessary for isolating a purified SVF, alongside cell viability assessments like flow cytometry, which are vital for confirming the efficacy of the isolated MSCs. We discuss the advantages and drawbacks of using autologous vs allogeneic SVF sources, touching upon immunocompatibility and logistical considerations, as well as the variability inherent in donor-derived cells. Anesthesia choices, the selection between hypodermic needles vs liposuction cannulas, and the role of adipose tissue lysers in achieving cellular dissociation are evaluated for their impact on SVF isolation. Centrifugation protocols are also analyzed for their part in ensuring the integrity of the SVF. The necessity for standardized MSC isolation protocols is highlighted, promoting reproducibility and successful clinical application. We encourage ongoing research to deepen the understanding of MSC biology and therapeutic action, aiming to further the field of regenerative medicine. The review concludes with a call for rigorous research, interdisciplinary collaboration, and strict adherence to ethical and regulatory standards to safeguard patient safety and optimize treatment outcomes with MSCs.
Collapse
Affiliation(s)
- Naveen Jeyaraman
- Department of Orthopaedics, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Sandeep Shrivastava
- Department of Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
| | - V R Ravi
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Arulkumar Nallakumarasamy
- Department of Orthopaedics, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Aditya Pundkar
- Department of Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
| | - Madhan Jeyaraman
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
4
|
Hagberg CE, Spalding KL. White adipocyte dysfunction and obesity-associated pathologies in humans. Nat Rev Mol Cell Biol 2024; 25:270-289. [PMID: 38086922 DOI: 10.1038/s41580-023-00680-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 02/10/2024]
Abstract
The prevalence of obesity and associated chronic diseases continues to increase worldwide, negatively impacting on societies and economies. Whereas the association between excess body weight and increased risk for developing a multitude of diseases is well established, the initiating mechanisms by which weight gain impairs our metabolic health remain surprisingly contested. In order to better address the myriad of disease states associated with obesity, it is essential to understand adipose tissue dysfunction and develop strategies for reinforcing adipocyte health. In this Review we outline the diverse physiological functions and pathological roles of human white adipocytes, examining our current knowledge of why white adipocytes are vital for systemic metabolic control, yet poorly adapted to our current obesogenic environment.
Collapse
Affiliation(s)
- Carolina E Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kirsty L Spalding
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Lee CM, Fang S. Fat Biology in Triple-Negative Breast Cancer: Immune Regulation, Fibrosis, and Senescence. J Obes Metab Syndr 2023; 32:312-321. [PMID: 38014425 PMCID: PMC10786212 DOI: 10.7570/jomes23044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/18/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023] Open
Abstract
Obesity, now officially recognized as a disease requiring intervention, has emerged as a significant health concern due to its strong association with elevated susceptibility to diverse diseases and various types of cancer, including breast cancer. The link between obesity and cancer is intricate, with obesity exerting a significant impact on cancer recurrence and elevated mortality rates. Among the various subtypes of breast cancer, triple-negative breast cancer (TNBC) is the most aggressive, accounting for 15% to 20% of all cases. TNBC is characterized by low expression of estrogen receptors and progesterone receptors as well as the human epidermal growth factor 2 receptor protein. This subtype poses distinct challenges in terms of treatment response and exhibits strong invasiveness. Furthermore, TNBC has garnered attention because of its association with obesity, in which excess body fat and reduced physical activity have been identified as contributing factors to the increased incidence of this aggressive form of breast cancer. In this comprehensive review, the impact of obesity on TNBC was explored. Specifically, we focused on the three key mechanisms by which obesity affects TNBC development and progression: modification of the immune profile, facilitation of fibrosis, and initiation of senescence. By comprehensively examining these mechanisms, we illuminated the complex interplay between TNBC and obesity, facilitating the development of novel approaches for prevention, early detection, and effective management of this challenging disease.
Collapse
Affiliation(s)
- Chae Min Lee
- Graduate School of Medical Science, Brain Korea 2 Project, Yonsei University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sungsoon Fang
- Graduate School of Medical Science, Brain Korea 2 Project, Yonsei University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Chronic Intractable Disease for Systems Medicine Research Center, Yonsei University College of Medicine, Seoul, Korea
- Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Gliniak CM, Pedersen L, Scherer PE. Adipose tissue fibrosis: the unwanted houseguest invited by obesity. J Endocrinol 2023; 259:e230180. [PMID: 37855264 PMCID: PMC11648981 DOI: 10.1530/joe-23-0180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/27/2023] [Indexed: 09/28/2023]
Abstract
The prevalence of obesity is increasing exponentially across the globe. The lack of effective treatment options for long-term weight loss has magnified the enormity of this problem. Studies continue to demonstrate that adipose tissue holds a biological memory, one of the most important determinant of long-term weight maintenance. This phenomenon is consistent with the metabolically dynamic role of adipose tissue: it adapts and expands to store for excess energy and serves as an endocrine organ capable of synthesizing a number of biologically active molecules that regulate metabolic homeostasis. An important component of the plasticity of adipose tissue is the extracellular matrix, essential for structural support, mechanical stability, cell signaling and function. Chronic obesity upends a delicate balance of extracellular matrix synthesis and degradation, and the ECM accumulates in such a way that prevents the plasticity and function of the diverse cell types in adipose tissue. A series of maladaptive responses among the cells in adipose tissue leads to inflammation and fibrosis, major mechanisms that explain the link between obesity and insulin resistance, risk of type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease. Adipose tissue fibrosis persists after weight loss and further enhances adipose tissue dysfunction if weight is regained. Here, we highlight the current knowledge of the cellular events governing adipose tissue ECM remodeling during the development of obesity. Our goal is to delineate the relationship more clearly between adipose tissue ECM and metabolic disease, an important step toward better defining the pathophysiology of dysfunctional adipose tissue.
Collapse
Affiliation(s)
- Christy M Gliniak
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Line Pedersen
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
7
|
Barroso LSS, Faria MHS, Souza-Gomes AF, Barros JLVM, Kakehasi AM, Vieira ELM, Simões E Silva AC, Nunes-Silva A. Acute and Chronic Effects of Strength Training on Plasma Levels of Adipokines in Man. Int J Sports Med 2023; 44:751-758. [PMID: 37429318 DOI: 10.1055/a-2079-1607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Adipose tissue is specialized cells that produce and release adipokines. Exercise may modulate adipokine production in adipocytes. The aim of this longitudinal study was to evaluate the acute and chronic effects of strength training (ST) on plasma levels of adiponectin, leptin, and resistin. Twelve untrained young male participants (23.42±2.67 years) were selected. The training protocol consisted of 3 exercises, with 3 sets of 65% of 1RM (one-repetition maximum) with pause of 90 s between sets with duration of 5 s/repetition (2 s conc/3 s ecc), 3 times a week for 10 weeks. Blood was collected at four time points: before and after the first ST session and before and after the last ST session. The comparisons between adipokine levels before and after the same training session showed acute changes, while the comparisons between levels before or after the first session versus before or after the last session revealed chronic alterations. ST increased adiponectin levels after the first exercise session in comparison to levels before this session [50 952 (46 568-51 894) pg/mL vs. 52 981 (49 901-54 467) pg/mL, p=0.019]. Similar differences were observed for resistin levels, which were higher after the last session compared to before [4 214.4 (±829) pg/mL vs. pre-S30 2 251.3 (±462.2) pg/mL, p=0.0008] and in the comparison between after the last and after the first ST sessions [4 214.4 (±829.0) pg/mL vs. 1 563.7 (±284.8) pg/mL, p=0.004]. Leptin levels acutely changed in the last training session. ST produced acute and chronic changes in plasma adipokines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Albená Nunes-Silva
- Physical Education School, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
8
|
Pereira L, Valado A. Algae-Derived Natural Products in Diabetes and Its Complications-Current Advances and Future Prospects. Life (Basel) 2023; 13:1831. [PMID: 37763235 PMCID: PMC10533039 DOI: 10.3390/life13091831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Diabetes poses a significant global health challenge, necessitating innovative therapeutic strategies. Natural products and their derivatives have emerged as promising candidates for diabetes management due to their diverse compositions and pharmacological effects. Algae, in particular, have garnered attention for their potential as a source of bioactive compounds with anti-diabetic properties. This review offers a comprehensive overview of algae-derived natural products for diabetes management, highlighting recent developments and future prospects. It underscores the pivotal role of natural products in diabetes care and delves into the diversity of algae, their bioactive constituents, and underlying mechanisms of efficacy. Noteworthy algal derivatives with substantial potential are briefly elucidated, along with their specific contributions to addressing distinct aspects of diabetes. The challenges and limitations inherent in utilizing algae for therapeutic interventions are examined, accompanied by strategic recommendations for optimizing their effectiveness. By addressing these considerations, this review aims to chart a course for future research in refining algae-based approaches. Leveraging the multifaceted pharmacological activities and chemical components of algae holds significant promise in the pursuit of novel antidiabetic treatments. Through continued research and the fine-tuning of algae-based interventions, the global diabetes burden could be mitigated, ultimately leading to enhanced patient outcomes.
Collapse
Affiliation(s)
- Leonel Pereira
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, University of Coimbra, 3000-456 Coimbra, Portugal;
| | - Ana Valado
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, University of Coimbra, 3000-456 Coimbra, Portugal;
- Biomedical Laboratory Sciences, Polytechnic Institute of Coimbra, Coimbra Health School, Rua 5 de Outubro-SM Bispo, Apartado 7006, 3045-043 Coimbra, Portugal
| |
Collapse
|
9
|
Kologrivova IV, Naryzhnaya NV, Koshelskaya OA, Suslova TE, Kravchenko ES, Kharitonova OA, Evtushenko VV, Boshchenko AA. Association of Epicardial Adipose Tissue Adipocytes Hypertrophy with Biomarkers of Low-Grade Inflammation and Extracellular Matrix Remodeling in Patients with Coronary Artery Disease. Biomedicines 2023; 11:biomedicines11020241. [PMID: 36830779 PMCID: PMC9953115 DOI: 10.3390/biomedicines11020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
The aim of the study was to compare the morphological features of epicardial adipose tissue (EAT) adipocyte with the circulating inflammatory biomarkers and parameters of extracellular matrix remodeling in patients with coronary artery disease (CAD). We recruited 42 patients with CAD (m/f 28/14) who were scheduled for coronary artery bypass graft surgery (CABG). EAT adipocytes were obtained by the enzymatic method from intraoperative adipose tissue samples. Concentrations of secreted and lipoprotein-associated phospholipase A2 (sPLA2 and LpPLA2), TNF-α, IL-1β, IL-6, IL-10, high-sensitive C-reactive protein (hsCRP), metalloproteinase-9 (MMP-9), MMP-2, C-terminal cross-linking telopeptide of type I collagen (CTX-I), and tissue inhibitor of metalloproteinase 1 (TIMP-1) were measured in blood serum. Patients were divided into two groups: group 1-with mean EAT adipocytes' size ≤ 87.32 μm; group 2-with mean EAT adipocytes' size > 87.32 μm. Patients of group 2 had higher concentrations of triglycerides, hsCRP, TNF-α, and sPLA2 and a lower concentration of CTX-I. A multiple logistic regression model was created (RN2 = 0.43, p = 0.0013). Concentrations of TNF-α, sPLA2 and CTX-I appeared to be independent determinants of the EAT adipocyte hypertrophy. ROC analysis revealed the 78% accuracy, 71% sensitivity, and 85% specificity of the model, AUC = 0.82. According to our results, chronic low-grade inflammation and extracellular matrix remodeling are closely associated with the development of hypertrophy of EAT adipocytes, with serum concentrations of TNF-α, sPLA2 and CTX-I being the key predictors, describing the variability of epicardial adipocytes' size.
Collapse
Affiliation(s)
- Irina V. Kologrivova
- Correspondence: (I.V.K.); (N.V.N.); Tel.: +79-131-053-869 (I.V.K.); +79-039-542-139 (N.V.N.)
| | - Natalia V. Naryzhnaya
- Correspondence: (I.V.K.); (N.V.N.); Tel.: +79-131-053-869 (I.V.K.); +79-039-542-139 (N.V.N.)
| | | | | | | | | | | | | |
Collapse
|
10
|
Enhanced Adipogenic Differentiation of Human Dental Pulp Stem Cells in Enzymatically Decellularized Adipose Tissue Solid Foams. BIOLOGY 2022; 11:biology11081099. [PMID: 35892955 PMCID: PMC9394288 DOI: 10.3390/biology11081099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary Obesity shortens human lifespan and represents one of the most important public health problems causing significant economic and societal consequences worldwide. However, the current development of physiological human 3D adipose tissue models for in vitro research on preclinical personalized medicine is limited and expensive. Here, we designed, produced, and characterized 3D solid foams using a mixture of bovine collagen I and decellularized human adipose tissue to serve as a 3D matrix mimicking in vivo adipose microenvironment for cell culture purposes. Furthermore, we sought to validate its compatibility for the culture of human mesenchymal stem cells isolated from the dental pulp. We demonstrated that 3D solid foams are able to integrate the stem cells from the dental pulp and provide the appropriate cues to differentiate them into mature adipocytes. The results represent an advance of in vitro 3D models using a human extracellular matrix derived material for future personalized stem cell therapies. Abstract Engineered 3D human adipose tissue models and the development of physiological human 3D in vitro models to test new therapeutic compounds and advance in the study of pathophysiological mechanisms of disease is still technically challenging and expensive. To reduce costs and develop new technologies to study human adipogenesis and stem cell differentiation in a controlled in vitro system, here we report the design, characterization, and validation of extracellular matrix (ECM)-based materials of decellularized human adipose tissue (hDAT) or bovine collagen-I (bCOL-I) for 3D adipogenic stem cell culture. We aimed at recapitulating the dynamics, composition, and structure of the native ECM to optimize the adipogenic differentiation of human mesenchymal stem cells. hDAT was obtained by a two-enzymatic step decellularization protocol and post-processed by freeze-drying to produce 3D solid foams. These solid foams were employed either as pure hDAT, or combined with bCOL-I in a 3:1 proportion, to recreate a microenvironment compatible with stem cell survival and differentiation. We sought to investigate the effect of the adipogenic inductive extracellular 3D-microenvironment on human multipotent dental pulp stem cells (hDPSCs). We found that solid foams supported hDPSC viability and proliferation. Incubation of hDPSCs with adipogenic medium in hDAT-based solid foams increased the expression of mature adipocyte LPL and c/EBP gene markers as determined by RT-qPCR, with respect to bCOL-I solid foams. Moreover, hDPSC capability to differentiate towards adipocytes was assessed by PPAR-γ immunostaining and Oil-red lipid droplet staining. We found out that both hDAT and mixed 3:1 hDAT-COL-I solid foams could support adipogenesis in 3D-hDPSC stem cell cultures significantly more efficiently than solid foams of bCOL-I, opening the possibility to obtain hDAT-based solid foams with customized properties. The combination of human-derived ECM biomaterials with synthetic proteins can, thus, be envisaged to reduce fabrication costs, thus facilitating the widespread use of autologous stem cells and biomaterials for personalized medicine.
Collapse
|