1
|
Cao M, Xu LS, Huang P, Fan BB, Zhang YH. Network pharmacology analysis and molecular mechanism of paeoniflorin and its metabolite in prolactinoma cells. Mol Divers 2025; 29:1415-1425. [PMID: 39012564 DOI: 10.1007/s11030-024-10923-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024]
Abstract
Prolactinoma was the most common functional pituitary neuroendocrine tumor tissue type, which was caused by excessive proliferation of pituitary prolactin (PRL) cells. Drug therapy of dopamine receptor agonists was generally considered as the prior treatment for prolactinoma patients. However, there were still prolactinoma patients who were resistant to dopamine agonists. Studies have been reported that paeoniflorin can inhibit the secretion of PRL in prolactinoma cells lacking dopamine D2 receptor (D2R) expression, and paeoniflorin can be metabolized into albiflorin by intestinal flora in rats. The effect of albiflorin on prolactinoma has not been reported yet. In this study, network pharmacology was used to analyze the mechanism of paeoniflorin and its metabolite albiflorin as multi-target therapy for prolactinoma, and the experimental verification was carried out. In order to clarify the complex relationship among paeoniflorin, albiflorin and prolactinoma, we constructed a component-target-disease network, and further constructed interaction network, MMP9, EGFR, FGF2, FGFR1 and LGALS3 were screened as the core targets. Kyoto encyclopedia of genes and genomes (KEGG) analysis showed that paeoniflorin and albiflorin may be involved in various pathways in the treatment of prolactinoma, included relaxin signaling pathway and PI3K-Akt signaling pathway. Molecular docking analysis showed that paeoniflorin and albiflorin had good binding activity with MMP9. Western blotting results showed that paeoniflorin and albiflorin could significantly reduce the expression of MMP9, and ELISA results showed that paeoniflorin and albiflorin could significantly reduce the concentration of PRL in GH3 cells, and the reduce degree of albiflorin was stronger than paeoniflorin at 50 μM, which indicated that albiflorin might be a potential drug to treat prolactinoma, which can regulate prolactinoma through MMP9 and reduce the concentration of PRL. Our study provided a new therapeutic strategy for prolactinoma.
Collapse
Affiliation(s)
- Min Cao
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Lun-Shan Xu
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Ping Huang
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Bin-Bin Fan
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yi-Hua Zhang
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
2
|
Li Q, Chao T, Wang Y, He P, Zhang L, Wang J. Metabolomics and transcriptomics analyses reveal the complex molecular mechanisms by which the hypothalamus regulates sexual development in female goats. BMC Genomics 2025; 26:303. [PMID: 40148778 PMCID: PMC11951529 DOI: 10.1186/s12864-025-11492-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The hypothalamus is a critical organ that regulates sexual development in animals. However, current research on the hypothalamic regulation of sexual maturation in female goats remains limited. In this study, we conducted metabolomic and transcriptomic analyses on the hypothalamic tissues of female Jining grey goats at different stages of sexual development (1 day old (neonatal, D1, n = 5), 2 months old (prepuberty, M2, n = 5), 4 months old (sexual maturity, M4, n = 5), and 6 months old (breeding period, M6, n = 5)). RESULTS A total of 418 differential metabolites (DAMs) were identified in this study, among which the abundance of metabolites such as anserine, L-histidine, carnosine, taurine, and 4-aminobutyric gradually increased with the progression of sexual development. These metabolites may regulate neuronal development and hormone secretion processes by influencing the metabolism of histidine and phenylalanine. Through combined transcriptomic and metabolomic analyses, we identified that differentially expressed genes such as mitogen-activated protein kinase kinase kinase 9 (MAP3K9), prune homolog 2 with BCH domain (PRUNE2), and potassium voltage-gated channel interacting protein 4(KCNIP4) may jointly regulate the development and energy metabolism of hypothalamic Gonadotropin-releasing hormone neurons in conjunction with DAMs, including LPC22:5, 2-Arachidonyl Glycerol ether, LPE22:5, and Lysops22:5. Additionally, we elucidated the molecular mechanism through which glutathione metabolism regulates sexual maturation in goats. CONCLUSIONS In summary, this study illustrates the dynamic changes in metabolites and mRNA within hypothalamic tissue during postnatal sexual maturation in female Jining grey goats. This research may provide significant scientific insights for future animal breeding.
Collapse
Affiliation(s)
- Qing Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271014, Shandong Province, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an City, 271014, Shandong Province, China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271014, Shandong Province, China.
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an City, 271014, Shandong Province, China.
| | - Yanyan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271014, Shandong Province, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an City, 271014, Shandong Province, China
| | - Peipei He
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271014, Shandong Province, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an City, 271014, Shandong Province, China
| | - Lu Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271014, Shandong Province, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an City, 271014, Shandong Province, China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271014, Shandong Province, China.
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an City, 271014, Shandong Province, China.
| |
Collapse
|
3
|
Li M, Lu Y, Gao Z, Yue D, Hong J, Wu J, Xi D, Deng W, Chong Y. Pan-Omics in Sheep: Unveiling Genetic Landscapes. Animals (Basel) 2024; 14:273. [PMID: 38254442 PMCID: PMC10812798 DOI: 10.3390/ani14020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/04/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Multi-omics-integrated analysis, known as panomics, represents an advanced methodology that harnesses various high-throughput technologies encompassing genomics, epigenomics, transcriptomics, proteomics, and metabolomics. Sheep, playing a pivotal role in agricultural sectors due to their substantial economic importance, have witnessed remarkable advancements in genetic breeding through the amalgamation of multiomics analyses, particularly with the evolution of high-throughput technologies. This integrative approach has established a robust theoretical foundation, enabling a deeper understanding of sheep genetics and fostering improvements in breeding strategies. The comprehensive insights obtained through this approach shed light on diverse facets of sheep development, including growth, reproduction, disease resistance, and the quality of livestock products. This review primarily focuses on the application of principal omics analysis technologies in sheep, emphasizing correlation studies between multiomics data and specific traits such as meat quality, wool characteristics, and reproductive features. Additionally, this paper anticipates forthcoming trends and potential developments in this field.
Collapse
Affiliation(s)
- Mengfei Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
| | - Ying Lu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
| | - Zhendong Gao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
| | - Dan Yue
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
- Faculty of Animal Science and Technology, Yuxi Agricultural Vocational and Technical College, Yuxi 653106, China
| | - Jieyun Hong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
| | - Jiao Wu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
| | - Dongmei Xi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
| | - Weidong Deng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
| | - Yuqing Chong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
| |
Collapse
|