1
|
Burguet P, La Rocca R, Kune C, Tellatin D, Stulanovic N, Rigolet A, Far J, Ongena M, Rigali S, Quinton L. Exploiting Differential Signal Filtering (DSF) and Image Structure Filtering (ISF) Methods for Untargeted Mass Spectrometry Imaging of Bacterial Metabolites. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1743-1755. [PMID: 39007645 DOI: 10.1021/jasms.4c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is a label-free technique, producing images where pixels contain mass spectra. The technique allows the visualization of the spatial distribution of (bio)molecules from metabolites to proteins, on surfaces such as tissues sections or bacteria culture media. One particularly exciting example of MALDI-MSI use rests on its potential to localize ionized compounds produced during microbial interactions and chemical communication, offering a molecular snapshot of metabolomes at a given time. The huge size and the complexity of generated MSI data make the processing of the data challenging, which requires the use of computational methods. Despite recent advances, currently available commercial software relies mainly on statistical tools to identify patterns, similarities, and differences within data sets. However, grouping m/z values unique to a given data set according to microbiological contexts, such as coculture experiments, still requires tedious manual analysis. Here we propose a nontargeted method exploiting the differential signals between negative controls and tested experimental conditions, i.e., differential signal filtering (DSF), and a scoring of the ion images using image structure filtering (ISF) coupled with a fold change score between the controls and the conditions of interest. These methods were first applied to coculture experiments involving Escherichia coli and Streptomyces coelicolor, revealing specific MS signals during bacterial interaction. Two case studies were also investigated: (i) cellobiose-mediated induction for the pathogenicity of Streptomyces scabiei, the causative agent of common scab on root and tuber crops, and (ii) iron-repressed production of siderophores of S. scabiei. This report proposes guidelines for MALDI-MSI data treatment applied in the case of microbiology contexts, with enhanced ion peak annotation in specific culture conditions. The strengths and weaknesses of the methods are discussed.
Collapse
Affiliation(s)
- Pierre Burguet
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| | - Raphaël La Rocca
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| | - Christopher Kune
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| | - Déborah Tellatin
- InBioS - Center for Protein Engineering, University of Liège, 4000 Liège, Belgium
| | - Nudzejma Stulanovic
- InBioS - Center for Protein Engineering, University of Liège, 4000 Liège, Belgium
| | - Augustin Rigolet
- Gembloux Agro-Bio Tech, University of Liege, 5030 Gembloux, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| | - Marc Ongena
- Gembloux Agro-Bio Tech, University of Liege, 5030 Gembloux, Belgium
| | - Sébastien Rigali
- InBioS - Center for Protein Engineering, University of Liège, 4000 Liège, Belgium
| | - Loïc Quinton
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
2
|
Kaneko K, Mieda M, Jiang Y, Takahashi N, Kakeya H. Tumescenamide C, a cyclic lipodepsipeptide from Streptomyces sp. KUSC_F05, exerts antimicrobial activity against the scab-forming actinomycete Streptomyces scabiei. J Antibiot (Tokyo) 2024; 77:353-364. [PMID: 38523145 DOI: 10.1038/s41429-024-00716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/08/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024]
Abstract
The antimicrobial activity of tumescenamide C against the scab-forming S. scabiei NBRC13768 was confirmed with a potent IC50 value (1.5 μg/mL). Three tumescenamide C-resistant S. scabiei strains were generated to compare their gene variants. All three resistant strains contained nonsynonymous variants in genes related to cellobiose/cellotriose transport system components; cebF1, cebF2, and cebG2, which are responsible for the production of the phytotoxin thaxtomin A. Decrease in thaxtomin A production and the virulence of the three resistant strains were revealed by the LC/MS analysis and necrosis assay, respectively. Although the nonsynonymous variants were insufficient for identifying the molecular target of tumescenamide C, the cell wall component wall teichoic acid (WTA) was observed to bind significantly to tumescenamide C. Moreover, changes in the WTA contents were detected in the tumescenamide C-resistant strains. These results imply that tumescenamide C targets the cell wall system to exert antimicrobial effects on S. scabiei.
Collapse
Affiliation(s)
- Kensuke Kaneko
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
- Hachinohe College of Technology, Aomori, 039-1192, Japan
| | - Marika Mieda
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Yulu Jiang
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Nobuaki Takahashi
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
3
|
Vincent CV, Bignell DRD. Regulation of virulence mechanisms in plant-pathogenic Streptomyces. Can J Microbiol 2024; 70:199-212. [PMID: 38190652 DOI: 10.1139/cjm-2023-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Streptomyces have a uniquely complex developmental life cycle that involves the coordination of morphological differentiation with the production of numerous bioactive specialized metabolites. The majority of Streptomyces spp. are soil-dwelling saprophytes, while plant pathogenicity is a rare attribute among members of this genus. Phytopathogenic Streptomyces are responsible for economically important diseases such as common scab, which affects potato and other root crops. Following the acquisition of genes encoding virulence factors, Streptomyces pathogens are expected to have specifically adapted their regulatory pathways to enable transition from a primarily saprophytic to a pathogenic lifestyle. Investigations of the regulation of pathogenesis have primarily focused on Streptomyces scabiei and the principal pathogenicity determinant thaxtomin A. The coordination of growth and thaxtomin A production in this species is controlled in a hierarchical manner by cluster-situated regulators, pleiotropic regulators, signalling and plant-derived molecules, and nutrients. Although the majority of phytopathogenic Streptomyces produce thaxtomins, many also produce additional virulence factors, and there are scab-causing pathogens that do not produce thaxtomins. The development of effective control strategies for common scab and other Streptomyces plant diseases requires a more in-depth understanding of the genetic and environmental factors that modulate the plant pathogenic lifestyle of these organisms.
Collapse
Affiliation(s)
- Corrie V Vincent
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Dawn R D Bignell
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
4
|
Stulanovic N, Kerdel Y, Rezende L, Deflandre B, Burguet P, Belde L, Denoel R, Tellatin D, Rigolet A, Hanikenne M, Quinton L, Ongena M, Rigali S. Nitrogen sources enhance siderophore-mediated competition for iron between potato common scab and late blight causative agents. Metallomics 2024; 16:mfae004. [PMID: 38244228 DOI: 10.1093/mtomcs/mfae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/18/2024] [Indexed: 01/22/2024]
Abstract
How do pathogens affecting the same host interact with each other? We evaluated here the types of microbe-microbe interactions taking place between Streptomyces scabiei and Phytophthora infestans, the causative agents of common scab and late blight diseases in potato crops, respectively. Under most laboratory culture conditions tested, S. scabiei impaired or completely inhibited the growth of P. infestans by producing either soluble and/or volatile compounds. Increasing peptone levels correlated with increased inhibition of P. infestans. Comparative metabolomics showed that production of S. scabiei siderophores (desferrioxamines, pyochelin, scabichelin, and turgichelin) increased with the quantity of peptone, thereby suggesting that they participate in the inhibition of the oomycete growth. Mass spectrometry imaging further uncovered that the zones of secreted siderophores and of P. infestans growth inhibition coincided. Moreover, either the repression of siderophore production or the neutralization of their iron-chelating activity led to a resumption of P. infestans growth. Replacement of peptone by natural nitrogen sources such as ammonium nitrate, sodium nitrate, ammonium sulfate, and urea also triggered siderophore production in S. scabiei. Interestingly, nitrogen source-induced siderophore production also inhibited the growth of Alternaria solani, the causative agent of the potato early blight. Overall, our work further emphasizes the importance of competition for iron between microorganisms that colonize the same niche. As common scab never alters the vegetative propagation of tubers, we propose that S. scabiei, under certain conditions, could play a protective role for its hosts against much more destructive pathogens through exploitative iron competition and volatile compound production.
Collapse
Affiliation(s)
- Nudzejma Stulanovic
- InBioS-Center for Protein Engineering, Institut de Chimie, University of Liège, B-4000 Liège, Belgium
| | - Yasmine Kerdel
- InBioS-Center for Protein Engineering, Institut de Chimie, University of Liège, B-4000 Liège, Belgium
| | - Lucas Rezende
- Hedera-22, Boulevard du Rectorat 27b, B-4000 Liège, Belgium
| | - Benoit Deflandre
- InBioS-Center for Protein Engineering, Institut de Chimie, University of Liège, B-4000 Liège, Belgium
| | - Pierre Burguet
- Molecular Systems (MolSys), Department of Chemistry, University of Liège, B-4000 Liège, Belgium
| | - Loïc Belde
- InBioS-Center for Protein Engineering, Institut de Chimie, University of Liège, B-4000 Liège, Belgium
| | - Romane Denoel
- InBioS-Center for Protein Engineering, Institut de Chimie, University of Liège, B-4000 Liège, Belgium
| | - Déborah Tellatin
- InBioS-Center for Protein Engineering, Institut de Chimie, University of Liège, B-4000 Liège, Belgium
| | - Augustin Rigolet
- Microbial Processes and Interactions, TERRA Teaching and Research Center, BioEcoAgro, Joint Research Unit/UMR transfrontalière 1158, University of Liège-Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Marc Hanikenne
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, B-4000 Liège, Belgium
| | - Loïc Quinton
- Molecular Systems (MolSys), Department of Chemistry, University of Liège, B-4000 Liège, Belgium
| | - Marc Ongena
- Microbial Processes and Interactions, TERRA Teaching and Research Center, BioEcoAgro, Joint Research Unit/UMR transfrontalière 1158, University of Liège-Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Sébastien Rigali
- InBioS-Center for Protein Engineering, Institut de Chimie, University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
5
|
Zhang F, Denis M. Editorial for the Special Issue, 'Secondary Metabolites from Microorganisms or Microorganism-Host Interaction?'. BIOLOGY 2023; 12:1515. [PMID: 38132341 PMCID: PMC10740502 DOI: 10.3390/biology12121515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
In this Special Issue, there are 13 published papers from over 10 countries [...].
Collapse
Affiliation(s)
- Fengli Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Michel Denis
- Mediterranean Institute of Oceanography UM 110, Aix-Marseille University, Toulon University, CNRS, IRD, CEDEX 09, 13288 Marseille, France
| |
Collapse
|
6
|
Kerff F, Jourdan S, Francis IM, Deflandre B, Ribeiro Monteiro S, Stulanovic N, Loria R, Rigali S. Common scab disease: structural basis of elicitor recognition in pathogenic Streptomyces species. Microbiol Spectr 2023; 11:e0197523. [PMID: 37791952 PMCID: PMC10714786 DOI: 10.1128/spectrum.01975-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/21/2023] [Indexed: 10/05/2023] Open
Abstract
IMPORTANCE Common scab is a disease caused by a few Streptomyces species that affects important root and tuber crops including potato, beet, radish, and parsnip, resulting in major economic losses worldwide. In this work, we unveiled the molecular basis of host recognition by these pathogens by solving the structure of the sugar-binding protein CebE of Streptomyces scabiei in complex with cellotriose, the main elicitor of the pathogenic lifestyle of these bacteria. We further revealed that the signaling pathway from CebE-mediated transport of cellotriose is conserved in all pathogenic species except Streptomyces ipomoeae, which causes soft rot disease in sweet potatoes. Our work also provides the structural basis of the uptake of cellobiose and cellotriose in saprophytic Streptomyces species, the first step activating the expression of the enzymatic system degrading the most abundant polysaccharide on earth, cellulose.
Collapse
Affiliation(s)
- Frédéric Kerff
- InBioS–Center for Protein Engineering, Institut de Chimie B6a, University of Liège, Liège, Belgium
| | - Samuel Jourdan
- InBioS–Center for Protein Engineering, Institut de Chimie B6a, University of Liège, Liège, Belgium
| | - Isolde M. Francis
- Department of Biology, California State University, Bakersfield, California, USA
| | - Benoit Deflandre
- InBioS–Center for Protein Engineering, Institut de Chimie B6a, University of Liège, Liège, Belgium
| | - Silvia Ribeiro Monteiro
- InBioS–Center for Protein Engineering, Institut de Chimie B6a, University of Liège, Liège, Belgium
| | - Nudzejma Stulanovic
- InBioS–Center for Protein Engineering, Institut de Chimie B6a, University of Liège, Liège, Belgium
| | - Rosemary Loria
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Sébastien Rigali
- InBioS–Center for Protein Engineering, Institut de Chimie B6a, University of Liège, Liège, Belgium
| |
Collapse
|