1
|
Moss CE, Johnston SA, Kimble JV, Clements M, Codd V, Hamby S, Goodall AH, Deshmukh S, Sudbery I, Coca D, Wilson HL, Kiss-Toth E. Aging-related defects in macrophage function are driven by MYC and USF1 transcriptional programs. Cell Rep 2024; 43:114073. [PMID: 38578825 DOI: 10.1016/j.celrep.2024.114073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/15/2024] [Accepted: 03/21/2024] [Indexed: 04/07/2024] Open
Abstract
Macrophages are central innate immune cells whose function declines with age. The molecular mechanisms underlying age-related changes remain poorly understood, particularly in human macrophages. We report a substantial reduction in phagocytosis, migration, and chemotaxis in human monocyte-derived macrophages (MDMs) from older (>50 years old) compared with younger (18-30 years old) donors, alongside downregulation of transcription factors MYC and USF1. In MDMs from young donors, knockdown of MYC or USF1 decreases phagocytosis and chemotaxis and alters the expression of associated genes, alongside adhesion and extracellular matrix remodeling. A concordant dysregulation of MYC and USF1 target genes is also seen in MDMs from older donors. Furthermore, older age and loss of either MYC or USF1 in MDMs leads to an increased cell size, altered morphology, and reduced actin content. Together, these results define MYC and USF1 as key drivers of MDM age-related functional decline and identify downstream targets to improve macrophage function in aging.
Collapse
Affiliation(s)
- Charlotte E Moss
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK; Healthy Lifespan Institute, University of Sheffield, Sheffield, UK
| | - Simon A Johnston
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Joshua V Kimble
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK; Healthy Lifespan Institute, University of Sheffield, Sheffield, UK
| | - Martha Clements
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; National Institute for Healthcare Research, Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Stephen Hamby
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; National Institute for Healthcare Research, Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Alison H Goodall
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; National Institute for Healthcare Research, Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Sumeet Deshmukh
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Ian Sudbery
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Daniel Coca
- Healthy Lifespan Institute, University of Sheffield, Sheffield, UK; Department of Autonomic Control and Systems Engineering, University of Sheffield, Sheffield, UK
| | - Heather L Wilson
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK; Healthy Lifespan Institute, University of Sheffield, Sheffield, UK.
| | - Endre Kiss-Toth
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK; Healthy Lifespan Institute, University of Sheffield, Sheffield, UK; Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
2
|
Lan Y, Dong M, Li Y, Diao Y, Chen Z, Wu Z. Upregulation of girdin delays endothelial cell apoptosis via promoting engulfment of platelets. Mol Biol Rep 2023; 50:8111-8120. [PMID: 37548867 DOI: 10.1007/s11033-023-08625-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/22/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Endothelial cells are crucial in maintaining the homeostasis of the blood-brain barrier. Girders of actin filament (Girdin) and phosphor (p)-Girdin are essential for the engulfment of human brain microvascular endothelial cells (HBMECs) into platelets (PLTs), but the potential mechanism remains unclear and requires further study. METHODS Following PLT and cytochalasin D treatment, Hoechst 33,342 detected apoptosis. The transfection efficiency of the short hairpin RNA targeting Girdin (sh-Girdin) or overexpressing Girdin (OE-Girdin) was determined using western blotting. Sh-Girdin, OE-Girdin, mutated Girdin (m-Girdin), and microfilament binding region deleted Girdin (Del-Girdin) were transfected into HBMECs under PLT conditions. Subsequently, the engulfment of HBMECs by PLTs was detected by flow cytometry and transmission electron microscopy. Girdin and phosphorylated (p)-Girdin levels were quantified by western blot. The positive expression of Girdin was measured by immunohistochemistry (IHC). The localization of PLT, Girdin, and p-Girdin and the engulfment of HBMECs in PLTs were analyzed by confocal microscopy. RESULT Cytochalasin D overturned the inhibitory effect of PLT on cell apoptosis. OE-Girdin enhanced the fluorescent intensity of PLT-labelling and the engulfment of HBMECs by PLTs, while sh-Girdin, m-Girdin, and Del-Girdin ran reversely. OE-Girdin elevated the Girdin and p-Girdin levels, while sh-Girdin and Del-Girdin were the opposite, but m-Girdin did not affect the p-Girdin and Girdin levels. CONCLUSION Girdin and p-Girdin were co-located with PLTs in HBMECs. The over-expression of Girdin was identified as being associated with the increasing engulfment of PTLs. Girdin may be an effective target to alleviate endothelial cell apoptosis.
Collapse
Affiliation(s)
- Yong Lan
- Department of Vascular Surgery, Beijing hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China.
| | - Min Dong
- Department of Cardiology, Beijing hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Yongjun Li
- Department of Vascular Surgery, Beijing hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Yongpeng Diao
- Department of Vascular Surgery, Beijing hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Zuoguan Chen
- Department of Vascular Surgery, Beijing hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Zhiyuan Wu
- Department of Vascular Surgery, Beijing hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| |
Collapse
|
3
|
Mohovic N, Peradinovic J, Markovinovic A, Cimbro R, Minic Z, Dominovic M, Jakovac H, Nimac J, Rogelj B, Munitic I. Neuroimmune characterization of optineurin insufficiency mouse model during ageing. Sci Rep 2023; 13:11840. [PMID: 37481656 PMCID: PMC10363168 DOI: 10.1038/s41598-023-38875-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023] Open
Abstract
Optineurin is a multifunctional polyubiquitin-binding protein implicated in inflammatory signalling. Optineurin mutations are associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), neurodegenerative diseases characterised by neuronal loss, neuroinflammation, and peripheral immune disbalance. However, the pathogenic role of optineurin mutations is unclear. We previously observed no phenotype in the unmanipulated young optineurin insufficiency mice (Optn470T), designed to mimic ALS/FTD-linked truncations deficient in polyubiquitin binding. The purpose of this study was to investigate whether ageing would trigger neurodegeneration. We performed a neurological, neuropathological, and immunological characterization of ageing wild-type (WT) and Optn470T mice. No motor or cognitive differences were detected between the genotypes. Neuropathological analyses demonstrated signs of ageing including lipofuscin accumulation and microglial activation in WT mice. However, this was not worsened in Optn470T mice, and they did not exhibit TAR DNA-binding protein 43 (TDP-43) aggregation or neuronal loss. Spleen immunophenotyping uncovered T cell immunosenescence at two years but without notable differences between the WT and Optn470T mice. Conventional dendritic cells (cDC) and macrophages exhibited increased expression of activation markers in two-year-old Optn470T males but not females, although the numbers of innate immune cells were similar between genotypes. Altogether, a combination of optineurin insufficiency and ageing did not induce ALS/FTD-like immune imbalance and neuropathology in mice.
Collapse
Affiliation(s)
- Nikolina Mohovic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000, Rijeka, Croatia
| | - Josip Peradinovic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000, Rijeka, Croatia
| | - Andrea Markovinovic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000, Rijeka, Croatia
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, 5 Cutcombe Road, London, SE5 9RX, UK
| | - Raffaello Cimbro
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000, Rijeka, Croatia
| | - Zeljka Minic
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000, Rijeka, Croatia
| | - Marin Dominovic
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000, Rijeka, Croatia
| | - Hrvoje Jakovac
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, Brace Branchetta 20, 51000, Rijeka, Croatia
| | - Jerneja Nimac
- Department of Biotechnology, Jozef Stefan Institute, 1000, Ljubljana, Slovenia
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Boris Rogelj
- Department of Biotechnology, Jozef Stefan Institute, 1000, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Ivana Munitic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000, Rijeka, Croatia.
| |
Collapse
|