1
|
Campione P, Rizzo MG, Bauso LV, Ielo I, Messina GML, Calabrese G. Osteoblastic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells on P3HT Thin Polymer Film. J Funct Biomater 2025; 16:10. [PMID: 39852566 PMCID: PMC11765816 DOI: 10.3390/jfb16010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Bone defects restoration has always been an arduous challenge in the orthopedic field due to the limitations of conventional grafts. Bone tissue engineering offers an alternative approach by using biomimetic materials, stem cells, and growth factors that are able to improve the regeneration of bone tissue. Different biomaterials have attracted great interest in BTE applications, including the poly(3-hexylthiofene) (P3HT) conductive polymer, whose primary advantage is its capability to provide a native extracellular matrix-like environment. Based on this evidence, in this study, we evaluated the biological response of human adipose-derived mesenchymal stem cells cultured on P3HT thin polymer film for 14 days. Our results suggest that P3HT represents a good substrate to induce osteogenic differentiation of osteoprogenitor cells, even in the absence of specific inductive growth factors, thus representing a promising strategy for bone regenerative medicine. Therefore, the system provided may offer an innovative platform for next-generation biocompatible materials for regenerative medicine.
Collapse
Affiliation(s)
- Paola Campione
- Department of Chemical Sciences, University of Catania and CSGI, Viale A. Doria 6, 95125 Catania, Italy;
| | - Maria Giovanna Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (M.G.R.); (L.V.B.); (I.I.)
| | - Luana Vittoria Bauso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (M.G.R.); (L.V.B.); (I.I.)
| | - Ileana Ielo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (M.G.R.); (L.V.B.); (I.I.)
| | - Grazia Maria Lucia Messina
- Department of Chemical Sciences, University of Catania and CSGI, Viale A. Doria 6, 95125 Catania, Italy;
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (M.G.R.); (L.V.B.); (I.I.)
| |
Collapse
|
2
|
Varpe A, Sayed M, Mane NS. A Comprehensive Literature Review on Advancements and Challenges in 3D Bioprinting of Human Organs: Ear, Skin, and Bone. Ann Biomed Eng 2025; 53:14-33. [PMID: 38977527 DOI: 10.1007/s10439-024-03580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
The field of 3D bioprinting is rapidly emerging within the realm of regenerative medicine, offering significant potential in dealing with the issue of organ shortages. Despite being in its early stages, it has the potential to replicate tissue structures accurately, providing new potential solutions for reconstructive surgery. This review explores the diverse applications of 3D bioprinting in regenerative medicine, pharmaceuticals, and the food industry, specifically focusing on ear, skin, and bone tissues due to their unique challenges and implications in the field. Significant progress has been made in cartilage and bone scaffold fabrication in ear reconstruction, yet challenges in functional maturation persist. Recent advancements highlight the potential for patient-specific ear substitutes, emphasizing the need for extensive clinical trials. In skin regeneration, 3D bioprinting addresses limitations in existing models, offering opportunities for improved wound healing and realistic skin models. While challenges exist, progress in biomaterials and in-situ bioprinting holds promise. In bone regeneration, 3D bioprinting presents personalized solutions for defects, but scaffold design refinement and addressing regulatory and ethical considerations are crucial. The transformative potential of 3D bioprinting in the field of medicine holds the promise of redefining therapeutic approaches and delivering personalized treatments and functional tissues. Interdisciplinary collaboration is essential for fully realizing the capabilities of 3D bioprinting. This review provides a detailed analysis of current methodologies, challenges, and prospects in 3D bioprinting for ear, skin, and bone tissue regeneration.
Collapse
Affiliation(s)
- Aishwarya Varpe
- School of Engineering, Ajeenkya DY Patil University, Charholi Bk., Lohegaon, Pune, Maharashtra, 412105, India
| | - Marwana Sayed
- School of Engineering, Ajeenkya DY Patil University, Charholi Bk., Lohegaon, Pune, Maharashtra, 412105, India
| | - Nikhil S Mane
- School of Engineering, Ajeenkya DY Patil University, Charholi Bk., Lohegaon, Pune, Maharashtra, 412105, India.
| |
Collapse
|
3
|
Bauso LV, La Fauci V, Longo C, Calabrese G. Bone Tissue Engineering and Nanotechnology: A Promising Combination for Bone Regeneration. BIOLOGY 2024; 13:237. [PMID: 38666849 PMCID: PMC11048357 DOI: 10.3390/biology13040237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
Large bone defects are the leading contributor to disability worldwide, affecting approximately 1.71 billion people. Conventional bone graft treatments show several disadvantages that negatively impact their therapeutic outcomes and limit their clinical practice. Therefore, much effort has been made to devise new and more effective approaches. In this context, bone tissue engineering (BTE), involving the use of biomaterials which are able to mimic the natural architecture of bone, has emerged as a key strategy for the regeneration of large defects. However, although different types of biomaterials for bone regeneration have been developed and investigated, to date, none of them has been able to completely fulfill the requirements of an ideal implantable material. In this context, in recent years, the field of nanotechnology and the application of nanomaterials to regenerative medicine have gained significant attention from researchers. Nanotechnology has revolutionized the BTE field due to the possibility of generating nanoengineered particles that are able to overcome the current limitations in regenerative strategies, including reduced cell proliferation and differentiation, the inadequate mechanical strength of biomaterials, and poor production of extrinsic factors which are necessary for efficient osteogenesis. In this review, we report on the latest in vitro and in vivo studies on the impact of nanotechnology in the field of BTE, focusing on the effects of nanoparticles on the properties of cells and the use of biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Luana Vittoria Bauso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (V.L.F.); (C.L.)
| | | | | | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (V.L.F.); (C.L.)
| |
Collapse
|
4
|
Mauro N, Calabrese G, Sciortino A, Rizzo MG, Messina F, Giammona G, Cavallaro G. Microporous Fluorescent Poly(D,L-lactide) Acid-Carbon Nanodot Scaffolds for Bone Tissue Engineering Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:449. [PMID: 38255617 PMCID: PMC10820564 DOI: 10.3390/ma17020449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
In this study, we introduce novel microporous poly(D,L-lactide) acid-carbon nanodot (PLA-CD) nanocomposite scaffolds tailored for potential applications in image-guided bone regeneration. Our primary objective was to investigate concentration-dependent structural variations and their relevance to cell growth, crucial aspects in bone regeneration. The methods employed included comprehensive characterization techniques such as DSC/TGA, FTIR, rheological, and degradation assessments, providing insights into the scaffolds' thermoplastic behavior, microstructure, and stability over time. Notably, the PLA-CD scaffolds exhibited distinct self-fluorescence, which persisted after 21 days of incubation, allowing detailed visualization in various multicolor modalities. Biocompatibility assessments were conducted by analyzing human adipose-derived stem cell (hADSC) growth on PLA-CD scaffolds, with results substantiated through cell viability and morphological analyses. hADSCs reached a cell viability of 125% and penetrated throughout the scaffold after 21 days of incubation. These findings underscore the scaffolds' potential in bone regeneration and fluorescence imaging. The multifunctional nature of the PLA-CD nanocomposite, integrating diagnostic capabilities with tunable properties, positions it as a promising candidate for advancing bone tissue engineering. Our study not only highlights key aspects of the investigation but also underscores the scaffolds' specific application in bone regeneration, providing a foundation for further research and optimization in this critical biomedical field.
Collapse
Affiliation(s)
- Nicolò Mauro
- Department of “Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche” (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy; (G.G.); (G.C.)
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98168 Messina, Italy; (G.C.); (M.G.R.)
| | - Alice Sciortino
- Department of Chimica e Fisica “E. Segrè”, Università Degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy; (A.S.); (F.M.)
| | - Maria G. Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98168 Messina, Italy; (G.C.); (M.G.R.)
| | - Fabrizio Messina
- Department of Chimica e Fisica “E. Segrè”, Università Degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy; (A.S.); (F.M.)
| | - Gaetano Giammona
- Department of “Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche” (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy; (G.G.); (G.C.)
| | - Gennara Cavallaro
- Department of “Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche” (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy; (G.G.); (G.C.)
| |
Collapse
|