1
|
Zhang M, Su Y, Wen P, Shao X, Yang P, An P, Jing W, Liu L, Yang Z, Yang M. Subtype cluster analysis unveiled the correlation between m6A- and cuproptosis-related lncRNAs and the prognosis, immune microenvironment, and treatment sensitivity of esophageal cancer. Front Immunol 2025; 16:1539630. [PMID: 40034693 PMCID: PMC11872909 DOI: 10.3389/fimmu.2025.1539630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Objective Esophageal cancer (EC) is characterized by a high degree of malignancy and poor prognosis. N6-methyladenosine (m6A), a prominent post-transcriptional modification of mRNA in mammalian cells, plays a pivotal role in regulating various cellular and biological processes. Similarly, cuproptosis has garnered attention for its potential implications in cancer biology. This study seeks to elucidate the impact of m6A- and cuproptosis-related long non-coding RNAs (m6aCRLncs) on the prognosis of patients with EC. Methods The EC transcriptional data and corresponding clinical information were retrieved from The Cancer Genome Atlas (TCGA) database, comprising 11 normal samples and 159 EC samples. Data on 23 m6A regulators and 25 cuproptosis-related genes were sourced from the latest literature. The m6aCRLncs linked to EC were identified through co-expression analysis. Differentially expressed m6aCRLncs associated with EC prognosis were screened using the limma package in R and univariate Cox regression analysis. Subtype clustering was performed to classify EC patients, enabling the investigation of differences in clinical outcomes and immune microenvironment across patient clusters. A risk prognostic model was constructed using least absolute shrinkage and selection operator (LASSO) regression. Its robustness was evaluated through survival analysis, risk stratification curves, and receiver operating characteristic (ROC) curves. Additionally, the model's applicability across various clinical features and molecular subtypes of EC patients was assessed. To further explore the model's utility in predicting the immune microenvironment, single-sample gene set enrichment analysis (ssGSEA), immune cell infiltration analysis, and immune checkpoint differential expression analysis were conducted. Drug sensitivity analysis was performed to identify potential therapeutic agents for EC. Finally, the mRNA expression levels of m6aCRLncs in EC cell lines were validated using reverse transcription quantitative polymerase chain reaction (RT-qPCR). Results We developed a prognostic risk model based on five m6aCRLncs, namely ELF3-AS1, HNF1A-AS1, LINC00942, LINC01389, and MIR181A2HG, to predict survival outcomes and characterize the immune microenvironment in EC patients. Analysis of molecular subtypes and clinical features revealed significant differences in cluster distribution, disease stage, and N stage between high- and low-risk groups. Immune profiling further identified distinct immune cell populations and functional pathways associated with risk scores, including positive correlations with naive B cells, resting CD4+ T cells, and plasma cells, and negative correlations with macrophages M0 and M1. Additionally, we identified key immune checkpoint-related genes with significant differential expression between risk groups, including TNFRSF14, TNFSF15, TNFRSF18, LGALS9, CD44, HHLA2, and CD40. Furthermore, nine candidate drugs with potential therapeutic efficacy in EC were identified: Bleomycin, Cisplatin, Cyclopamine, PLX4720, Erlotinib, Gefitinib, RO.3306, XMD8.85, and WH.4.023. Finally, RT-qPCR validation of the mRNA expression levels of m6aCRLncs in EC cell lines demonstrated that ELF3-AS1 expression was significantly upregulated in the EC cell lines KYSE-30 and KYSE-180 compared to normal esophageal epithelial cells. Conclusion This study elucidates the role of m6aCRLncs in shaping the prognostic outcomes and immune microenvironment of EC. Furthermore, it identifies potential therapeutic agents with efficacy against EC. These findings hold significant promise for enhancing the survival of EC patients and provide valuable insights to inform clinical decision-making in the management of this disease.
Collapse
Affiliation(s)
- Ming Zhang
- Department of General Practice, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yani Su
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Pengfei Wen
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Xiaolong Shao
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Peng Yang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Peng An
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Wensen Jing
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Lin Liu
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zhi Yang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Mingyi Yang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
2
|
He A, Huang Z, Feng Q, Zhang S, Li F, Li D, Lu H, Wang J. AC099850.3 promotes HBV-HCC cell proliferation and invasion through regulating CD276: a novel strategy for sorafenib and immune checkpoint combination therapy. J Transl Med 2024; 22:809. [PMID: 39217342 PMCID: PMC11366154 DOI: 10.1186/s12967-024-05576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND This study investigates the molecular mechanisms of CC@AC&SF@PP NPs loaded with AC099850.3 siRNA and sorafenib (SF) for improving hepatitis B virus-related hepatocellular carcinoma (HBV-HCC). METHODS A dataset of 44 HBV-HCC patients and their survival information was selected from the TCGA database. Immune genes related to survival status were identified using the ImmPort database and WGCNA analysis. A prognostic risk model was constructed and analyzed using Lasso regression. Differential analysis was performed to screen key genes, and their significance and predictive accuracy for HBV-HCC were validated using Kaplan-Meier survival curves, ROC analysis, CIBERSORT analysis, and correlation analysis. The correlation between AC099850.3 and the gene expression matrix was calculated, followed by GO and KEGG enrichment analysis using AC099850.3 and its co-expressed genes. HepG2.2.15 cells were selected for in vitro validation, and lentivirus interference, cell cycle determination, CCK-8 experiments, colony formation assays, Transwell experiments, scratch experiments, and flow cytometry were performed to investigate the effects of key genes on HepG2.2.15 cells. A subcutaneous transplanted tumor model in mice was constructed to verify the inhibitory effect of key genes on HBV-HCC tumors. Subsequently, pH-triggered drug release NPs (CC@AC&SF@PP) were prepared, and their therapeutic effects on HBV-HCC in situ tumor mice were studied. RESULTS A prognostic risk model (AC012313.9, MIR210HG, AC099850.3, AL645933.2, C6orf223, GDF10) was constructed through bioinformatics analysis, showing good sensitivity and specificity in diagnostic prediction. AC099850.3 was identified as a key gene, and enrichment analysis revealed its impact on cell cycle pathways. In vitro cell experiments demonstrated that AC099850.3 promotes HepG2.2.15 cell proliferation and invasion by regulating immune checkpoint CD276 expression and cell cycle progression. In vivo, subcutaneously transplanted tumor experiments showed that AC099850.3 promotes the growth of HBV-HCC tumors in nude mice. Furthermore, pH-triggered drug release NPs (CC@AC&SF@PP) loaded with AC099850.3 siRNA and SF were successfully prepared and delivered to the in situ HBV-HCC, enhancing the effectiveness of combined therapy for HBV-HCC. CONCLUSIONS AC099850.3 accelerates the cell cycle progression and promotes the occurrence and development of HBV-HCC by upregulating immune checkpoint CD276 expression. CC@AC&SF@PP NPs loaded with AC099850.3 siRNA and SF improve the effectiveness of combined therapy for HBV-HCC.
Collapse
Affiliation(s)
- Aoxiao He
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Zhihao Huang
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Qian Feng
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Shan Zhang
- Department of Hematology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Fan Li
- Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Dan Li
- Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Hongcheng Lu
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, 330006, China.
| | - Jiakun Wang
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, 330006, China.
| |
Collapse
|
3
|
Tang X, Guo M, Zhang Y, Lv J, Gu C, Yang Y. Examining the evidence for mutual modulation between m6A modification and circular RNAs: current knowledge and future prospects. J Exp Clin Cancer Res 2024; 43:216. [PMID: 39095902 PMCID: PMC11297759 DOI: 10.1186/s13046-024-03136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
The resistance of cancer cells to treatment significantly impedes the success of therapy, leading to the recurrence of various types of cancers. Understanding the specific mechanisms of therapy resistance may offer novel approaches for alleviating drug resistance in cancer. Recent research has shown a reciprocal relationship between circular RNAs (circRNAs) and N6-methyladenosine (m6A) modification, and their interaction can affect the resistance and sensitivity of cancer therapy. This review aims to summarize the latest developments in the m6A modification of circRNAs and their importance in regulating therapy resistance in cancer. Furthermore, we explore their mutual interaction and exact mechanisms and provide insights into potential future approaches for reversing cancer resistance.
Collapse
Affiliation(s)
- Xiaozhu Tang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengjie Guo
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanjiao Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junxian Lv
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ye Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
4
|
Feng R, Li H, Meng T, Fei M, Yang C. Bioinformatics analysis and experimental validation of m6A and cuproptosis-related lncRNA NFE4 in clear cell renal cell carcinoma. Discov Oncol 2024; 15:187. [PMID: 38797784 PMCID: PMC11128431 DOI: 10.1007/s12672-024-01023-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
PURPOSE This study aimed to construct an m6A and cuproptosis-related long non-coding RNAs (lncRNAs) signature to accurately predict the prognosis of kidney clear cell carcinoma (KIRC) patients using the information acquired from The Cancer Genome Atlas (TCGA) database. METHODS First, the co-expression analysis was performed to identify lncRNAs linked with N6-methyladenosine (m6A) and cuproptosis in ccRCC. Then, a model encompassing four candidate lncRNAs was constructed via univariate, least absolute shrinkage together with selection operator (LASSO), and multivariate regression analyses. Furthermore, Kaplan-Meier, principal component, functional enrichment annotation, and nomogram analyses were performed to develop a risk model that could effectively assess medical outcomes for ccRCC cases. Moreover, the cellular function of NFE4 in Caki-1/OS-RC-2 cultures was elucidated through CCK-8/EdU assessments and Transwell experiments. Dataset outcomes indicated that NFE4 can have possible implications in m6A and cuproptosis, and may promote ccRCC progression. RESULTS We constructed a panel of m6A and cuproptosis-related lncRNAs to construct a prognostic prediction model. The Kaplan-Meier and ROC curves showed that the feature had acceptable predictive validity in the TCGA training, test, and complete groups. Furthermore, the m6A and cuproptosis-related lncRNA model indicated higher diagnostic efficiency than other clinical features. Moreover, the NFE4 function analysis indicated a gene associated with m6A and cuproptosis-related lncRNAs in ccRCC. It was also revealed that the proliferation and migration of Caki-1 /OS-RC-2 cells were inhibited in the NFE4 knockdown group. CONCLUSION Overall, this study indicated that NFE4 and our constructed risk signature could predict outcomes and have potential clinical value.
Collapse
Affiliation(s)
- Rui Feng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Haolin Li
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Tong Meng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Mingtian Fei
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Cheng Yang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
5
|
Wei M, Lu L, Luo Z, Ma J, Wang J. Prognostic analysis of hepatocellular carcinoma based on cuproptosis -associated lncRNAs. BMC Gastroenterol 2024; 24:142. [PMID: 38654165 DOI: 10.1186/s12876-024-03219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/01/2024] [Indexed: 04/25/2024] Open
Abstract
OBJECTIVES Cuproptosis represents an innovative type of cell death, distinct from apoptosis, driven by copper dependency, yet the involvement of copper apoptosis-associated long non-coding RNAs (CRLncRNAs) in hepatocellular carcinoma (HCC) remains unclear. This study is dedicated to unveiling the role and significance of these copper apoptosis-related lncRNAs within the context of HCC, focusing on their impact on both the development of the disease and its prognosis. METHODS We conducted an analysis of gene transcriptomic and clinical data for HCC cases by sourcing information from The Cancer Genome Atlas database. By incorporating cuproptosis-related genes, we established prognostic features associated with cuproptosis-related lncRNAs. Furthermore, we elucidated the mechanism of cuproptosis-related lncRNAs in the prognosis and treatment of HCC through comprehensive approaches, including Lasso and Cox regression analyses, survival analyses of samples, as well as examinations of tumor mutation burden and immune function. RESULTS We developed a prognostic model featuring six cuproptosis-related lncRNAs: AC026412.3, AC125437.1, AL353572.4, MKLN1-AS, TMCC1-AS1, and SLC6A1-AS1. This model demonstrated exceptional prognostic accuracy in both training and validation cohorts for patients with tumors, showing significantly longer survival times for those categorized in the low-risk group compared to the high-risk group. Additionally, our analyses, including tumor mutation burden, immune function, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway enrichment, and drug sensitivity, further elucidated the potential mechanisms through which cuproptosis-associated lncRNAs may influence disease outcome. CONCLUSIONS The model developed using cuproptosis-related long non-coding RNAs (lncRNAs) demonstrates promising predictive capabilities for both the prognosis and immunotherapy outcomes of tumor patients. This could play a crucial role in patient management and the optimization of immunotherapeutic strategies, offering valuable insights for future research.
Collapse
Affiliation(s)
- Mingwei Wei
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Department of Hepatobiliary and Pancreatic Surgery, Baidong Hospital, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Libai Lu
- Department of Hepatobiliary and Pancreatic Surgery, Baidong Hospital, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zongjiang Luo
- Department of Hepatobiliary and Pancreatic Surgery, Baidong Hospital, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jiasheng Ma
- Department of Hepatobiliary and Pancreatic Surgery, Baidong Hospital, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jianchu Wang
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
- Department of Hepatobiliary and Pancreatic Surgery, Baidong Hospital, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| |
Collapse
|
6
|
Wu X, Wang S, Wu X, Chen Q, Cheng J, Qi Z. Analysis of m 6A-related lncRNAs for prognostic and immunotherapeutic response in hepatocellular carcinoma. J Cancer 2024; 15:2045-2065. [PMID: 38434979 PMCID: PMC10905389 DOI: 10.7150/jca.92128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/27/2024] [Indexed: 03/05/2024] Open
Abstract
Background: RNA methylation modifications are important post-translational modifications that are regulated in an epigenetic manner. Recently, N6-methyladenosine (m6A) RNA modifications have emerged as potential epigenetic markers in tumor biology. Methods: Gene expression and clinicopathological data of LIHC were obtained from the cancer genome atlas (TCGA) database. The relationship between long non-coding RNAs (lncRNAs) and m6A-related genes was determined by gene expression analysis using Perl and R software. Co-expression network of m6A-lncRNA was constructed, and the relevant lncRNAs associated with prognosis were identified using univariate Cox regression analysis. These lncRNAs were then divided into two clusters (cluster 1 and cluster 2) to determine the differences in survival, pathoclinical parameters, and immune cell infiltration between the different lncRNA subtypes. The least absolute shrinkage and selection operator (LASSO) was carried out for regression analysis and prognostic model. The HCC patients were randomly divided into a train group and a test group. According to the median risk score of the model, HCC patients were divided into high-risk and low-risk groups. We built models using the train group and confirmed them through the test group. The m6A-lncRNAs derived from the models were analyzed for the tumor mutational burden (TMB), immune evasion and immune function using R software. AL355574.1 was identified as an important m6A-associated lncRNA and selected for further investigation. Finally, in vitro experiments were conducted to confirm the effect of AL355574.1 on the biological function of HCC and the possible biological mechanisms. Huh7 and HepG2 cells were transfected with AL355574.1 siRNA and cell proliferation ability was measured by CCK-8, EdU and colony formation assays. Wound healing and transwell assays were used to determine the cell migration capacity. The expression levels of MMP-2, MMP-9, E-cadherin, N-cadherin and Akt/mTOR phosphorylation were all determined by Western blotting. Results: The lncRNAs with significant prognostic value were classified into two subtypes by a consistent clustering analysis. We found that the clinical features, immune cell infiltration and tumor microenvironment (TME) were significantly different between the lncRNA subtypes. Our analysis revealed significant correlations between these different lncRNA subtypes and immune infiltrating and stromal cells. We created the final risk profile using LASSO regression, which notably included three lncRNAs (AL355574.1, AL158166.1, TMCC1-AS1). A prognostic signature consisting of the three lncRNAs was constructed, and the model showed excellent prognostic predictive ability. The overall survival (OS) of the low-risk cohort was significantly higher than that of the high-risk cohort in both the train and test group. Both risk score [hazard ratio (HR)=1.062; P<0.001] and stage (HR=1.647; P< 0.001) were considered independent indicators of HCC prognosis by univariate and multivariate Cox regression analysis. In Huh7 and HepG2 cells, AL355574.1 knockdown inhibited cell proliferation and migration, suppressed the protein expression levels of MMP-2, MMP-9, N-cadherin and Akt/mTOR phosphorylation, but promoted the protein expression levels of E-cadherin. Conclusions: This study established a predictive model for the OS of HCC patients, and these OS-related m6A-lncRNAs, especially AL355574.1 may play a potential role in the progression of HCC. In vitro experiments also showed that AL355574.1 could enhance the expression of MMPs and EMT through the Akt/mTOR signaling pathway, thereby affected the proliferation and migration of HCC. This provides a new perspective on the anticancer molecular mechanism of AL355574.1 in HCC.
Collapse
Affiliation(s)
- Xingwei Wu
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
- Clinical Laboratory, Traditional Chinese Hospital of Lu'an, Anhui University of Chinese Medicine, Lu'an 237000, Anhui, P.R. China
| | - Shengnan Wang
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
- Department of Pathology, Fuyang People's Hospital, Anhui Medical University, Fuyang, Anhui, 236000, P.R. China
| | - Xiaoming Wu
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
- Department of Thyroid and Breast Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241002, P.R. China
| | - Qianyi Chen
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Jin Cheng
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
- Department of Gastroenterology, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241002, P.R. China
| | - Zhilin Qi
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| |
Collapse
|