1
|
Halabitska I, Petakh P, Lushchak O, Kamyshna I, Oksenych V, Kamyshnyi O. Metformin in Antiviral Therapy: Evidence and Perspectives. Viruses 2024; 16:1938. [PMID: 39772244 PMCID: PMC11680154 DOI: 10.3390/v16121938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/03/2025] Open
Abstract
Metformin, a widely used antidiabetic medication, has emerged as a promising broad-spectrum antiviral agent due to its ability to modulate cellular pathways essential for viral replication. By activating AMPK, metformin depletes cellular energy reserves that viruses rely on, effectively limiting the replication of pathogens such as influenza, HIV, SARS-CoV-2, HBV, and HCV. Its role in inhibiting the mTOR pathway, crucial for viral protein synthesis and reactivation, is particularly significant in managing infections caused by HIV, CMV, and EBV. Furthermore, metformin reduces oxidative stress and reactive oxygen species (ROS), which are critical for replicating arboviruses such as Zika and dengue. The drug also regulates immune responses, cellular differentiation, and inflammation, disrupting the life cycle of HPV and potentially other viruses. These diverse mechanisms suppress viral replication, enhance immune system functionality, and contribute to better clinical outcomes. This multifaceted approach highlights metformin's potential as an adjunctive therapy in treating a wide range of viral infections.
Collapse
Affiliation(s)
- Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Voli Square, 1, 46001 Ternopil, Ukraine
| | - Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, 88017 Uzhhorod, Ukraine
| | - Oleh Lushchak
- MRC Laboratory of Medical Sciences, London W12 0HS, UK
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Valentyn Oksenych
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| |
Collapse
|
2
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Pathogenesis of Hepatocellular Carcinoma: The Interplay of Apoptosis and Autophagy. Biomedicines 2023; 11:1166. [PMID: 37189787 PMCID: PMC10135776 DOI: 10.3390/biomedicines11041166] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) is a multifactorial process that has not yet been fully investigated. Autophagy and apoptosis are two important cellular pathways that are critical for cell survival or death. The balance between apoptosis and autophagy regulates liver cell turnover and maintains intracellular homeostasis. However, the balance is often dysregulated in many cancers, including HCC. Autophagy and apoptosis pathways may be either independent or parallel or one may influence the other. Autophagy may either inhibit or promote apoptosis, thus regulating the fate of the liver cancer cells. In this review, a concise overview of the pathogenesis of HCC is presented, with emphasis on new developments, including the role of endoplasmic reticulum stress, the implication of microRNAs and the role of gut microbiota. The characteristics of HCC associated with a specific liver disease are also described and a brief description of autophagy and apoptosis is provided. The role of autophagy and apoptosis in the initiation, progress and metastatic potential is reviewed and the experimental evidence indicating an interplay between the two is extensively analyzed. The role of ferroptosis, a recently described specific pathway of regulated cell death, is presented. Finally, the potential therapeutic implications of autophagy and apoptosis in drug resistance are examined.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, PAGNI University Hospital, University of Crete School of Medicine, 71500 Heraklion, Crete, Greece
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| |
Collapse
|
3
|
Factors Associated with the Prevalence of Hepatitis B among Volunteer Blood Donors at Jimma Blood Bank, South Ethiopia. Can J Gastroenterol Hepatol 2022; 2022:7458747. [PMID: 35655943 PMCID: PMC9152349 DOI: 10.1155/2022/7458747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/02/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hepatitis B is a severe, widespread infectious disease of the liver that affects millions of people around the world. It is one of the life-threatening liver infections caused by the hepatitis B virus (HBV). HBV is the cause of up to 80% of cases of primary liver cancer. Due to the potential risk associated with HBV infection, it is important to study the factors which are associated with the seropositive volunteers. OBJECTIVE The purpose of this study was to identify factors associated with seropositivity for the hepatitis B virus among volunteers who donated blood at the Jimma Blood Bank in southern Ethiopia. METHODS Cross-sectional research was conducted on blood donors who came to the Jimma Blood Bank to donate their blood. Three hundred and fifty-nine volunteer blood donors who arrived at the Jimma Blood Bank were investigated face-to-face in order to collect sociodemographic characteristics and risk factors for HBV infection. The data were analyzed using statistical software SPSS version 20.0. The association between the risk factor for HBV infection and HBV infection was determined using chi-square tests. RESULT In total, there were 359 participants; their mean age was 22.5, among which 161 (44.8%) were males. Out of 359 volunteers, 13 (3.6%) were seropositive for HBsAg. The test positivity rate among males was 7/198 (3.54%), while the rate among females was 6/161 (3.7%). More than 3/4 of those who tested positive were under the age of 40. Chi-square analysis showed that volunteers whose income was between 12 and 26.84 USD were less likely to have the infectious disease than those whose income was less than 11.84 USD per month (p=0.042). CONCLUSION The prevalence of HBV was found to be 3.6% among selected volunteers. It was found that, out of 20 volunteers, 13 had infection. Chi-square analysis showed that HBV infection was associated with low monthly income and the use of unsafe therapeutic injections.
Collapse
|
4
|
Datfar T, Doulberis M, Papaefthymiou A, Hines IN, Manzini G. Viral Hepatitis and Hepatocellular Carcinoma: State of the Art. Pathogens 2021; 10:pathogens10111366. [PMID: 34832522 PMCID: PMC8619105 DOI: 10.3390/pathogens10111366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/26/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
Viral hepatitis is one of the main causes leading to hepatocellular carcinoma (HCC). The continued rise in incidence of HCC suggests additional factors following infection may be involved. This review examines recent studies investigating the molecular mechanisms of chronic hepatitis and its association with hepatocarcinogenesis. Hepatitis B virus patients with genotype C display an aggressive disease course leading to HCC more than other genotypes. Furthermore, hepatitis B excretory antigen (HBeAg) seems to be a more sensitive predictive tumor marker exhibiting a six-fold higher relative risk in patients with positive HBsAg and HBeAg than those with HBsAg only. Single or combined mutations of viral genome can predict HCC development in up to 80% of patients. Several mutations in HBx-gene are related with higher HCC incidence. Overexpression of the core protein in HCV leads to hepatocellular lipid accumulation associated with oncogenesis. Reduced number and decreased functionality of natural killer cells in chronic HCV individuals dysregulate their surveillance function in tumor and viral cells resulting in HCC. Furthermore, high T-cell immunoglobulin and mucin 3 levels supress CD8+ T-cells, which lead to immunological dysregulation. Hepatitis D promotes HCC development indirectly via modifications to innate immunity, epigenetic alterations and production of reactive oxygen species with the LHDAg being the most highly associated with HCC development. Summarizing the results, HBV and HCV infection represent the most associated forms of viral hepatitis causing HCC. Further studies are warranted to further improve the prediction of high-risk patients and development of targeted therapeutics preventing the transition from hepatic inflammation–fibrosis to cancer.
Collapse
Affiliation(s)
- Toofan Datfar
- Department of General and Visceral Surgery, Hospital of Aarau, 5001 Aarau, Switzerland;
- Correspondence: ; Tel.: +41-76-4930834
| | - Michael Doulberis
- Department of Gastroenterology and Hepatology, Hospital of Aarau, 5001 Aarau, Switzerland;
| | | | - Ian N. Hines
- Department of Nutrition Science, East Carolina University, Greenville, NC 27858, USA;
| | - Giulia Manzini
- Department of General and Visceral Surgery, Hospital of Aarau, 5001 Aarau, Switzerland;
| |
Collapse
|
5
|
Ren J, Ojeda I, Patel M, Johnson ME, Lee H. Exploring small molecules with pan-genotypic inhibitory activities against hepatitis C virus NS3/4A serine protease. Bioorg Med Chem Lett 2019; 29:2349-2353. [PMID: 31201062 DOI: 10.1016/j.bmcl.2019.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 01/03/2023]
Abstract
Among the many Hepatitis C virus (HCV) genotypes and subtypes, genotypes 1b and 3a are most prevalent in United States and Asia, respectively. A total of 132 commercially available analogs of a previous lead compound were initially investigated against wild-type HCV genotype 1b NS3/4A protease. Ten compounds showed inhibitory activities (IC50 values) below 10 µM with comparable direct binding affinities (KD values) determined by surface plasmon resonance (SPR). To identify pan-genotypic inhibitors, these ten selected compounds were tested against four additional genotypes (1a, 2a, 3a, and 4) and three drug-resistant mutants (A156S, R155K, and V36M). Four new analogs have been identified with better activities against all five tested genotypes than the prior lead compound. Further, the original lead compound did not show activity against genotype 3a NS3/4A, whereas four newly identified compounds exhibited IC50 values below 33 µM against genotype 3a NS3/4A. Encouragingly, the best new compound F1813-0710 possessed promising activity toward genotype 3a, which is a huge improvement over the previous lead compound that had no effect on genotype 3a. This intriguing observation was further analyzed by molecular docking and molecular dynamics (MD) simulations to understand their different binding interactions, which should benefit future pan-genotypic inhibitor design and drug discovery.
Collapse
Affiliation(s)
- Jinhong Ren
- Center for Biomolecular Sciences, University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL 60607, USA
| | - Isabel Ojeda
- Center for Biomolecular Sciences, University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL 60607, USA
| | - Maulik Patel
- Center for Biomolecular Sciences, University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL 60607, USA
| | - Michael E Johnson
- Center for Biomolecular Sciences, University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL 60607, USA; Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 S. Wood Street, IL 60612, USA.
| | - Hyun Lee
- Center for Biomolecular Sciences, University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL 60607, USA; Biophysics Core at Research Resource Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 S. Wood Street, IL 60612, USA.
| |
Collapse
|
6
|
Molecular Mechanisms Driving Progression of Liver Cirrhosis towards Hepatocellular Carcinoma in Chronic Hepatitis B and C Infections: A Review. Int J Mol Sci 2019. [PMID: 30889843 DOI: 10.3390/ijms] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Almost all patients with hepatocellular carcinoma (HCC), a major type of primary liver cancer, also have liver cirrhosis, the severity of which hampers effective treatment for HCC despite recent progress in the efficacy of anticancer drugs for advanced stages of HCC. Here, we review recent knowledge concerning the molecular mechanisms of liver cirrhosis and its progression to HCC from genetic and epigenomic points of view. Because ~70% of patients with HCC have hepatitis B virus (HBV) and/or hepatitis C virus (HCV) infection, we focused on HBV- and HCV-associated HCC. The literature suggests that genetic and epigenetic factors, such as microRNAs, play a role in liver cirrhosis and its progression to HCC, and that HBV- and HCV-encoded proteins appear to be involved in hepatocarcinogenesis. Further studies are needed to elucidate the mechanisms, including immune checkpoints and molecular targets of kinase inhibitors, associated with liver cirrhosis and its progression to HCC.
Collapse
|
7
|
Molecular Mechanisms Driving Progression of Liver Cirrhosis towards Hepatocellular Carcinoma in Chronic Hepatitis B and C Infections: A Review. Int J Mol Sci 2019; 20:ijms20061358. [PMID: 30889843 PMCID: PMC6470669 DOI: 10.3390/ijms20061358] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/23/2019] [Accepted: 03/14/2019] [Indexed: 02/07/2023] Open
Abstract
Almost all patients with hepatocellular carcinoma (HCC), a major type of primary liver cancer, also have liver cirrhosis, the severity of which hampers effective treatment for HCC despite recent progress in the efficacy of anticancer drugs for advanced stages of HCC. Here, we review recent knowledge concerning the molecular mechanisms of liver cirrhosis and its progression to HCC from genetic and epigenomic points of view. Because ~70% of patients with HCC have hepatitis B virus (HBV) and/or hepatitis C virus (HCV) infection, we focused on HBV- and HCV-associated HCC. The literature suggests that genetic and epigenetic factors, such as microRNAs, play a role in liver cirrhosis and its progression to HCC, and that HBV- and HCV-encoded proteins appear to be involved in hepatocarcinogenesis. Further studies are needed to elucidate the mechanisms, including immune checkpoints and molecular targets of kinase inhibitors, associated with liver cirrhosis and its progression to HCC.
Collapse
|
8
|
Jindal A, Thadi A, Shailubhai K. Hepatocellular Carcinoma: Etiology and Current and Future Drugs. J Clin Exp Hepatol 2019; 9:221-232. [PMID: 31024205 PMCID: PMC6477125 DOI: 10.1016/j.jceh.2019.01.004] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is swiftly increasing in prevalence globally with a high mortality rate. The progression of HCC in patients is induced with advanced fibrosis, mainly cirrhosis, and hepatitis. The absence of proper preventive or curative treatment methods encouraged extensive research against HCC to develop new therapeutic strategies. The Food and Drug Administration-approved Nexavar (sorafenib) is used in the treatment of patients with unresectable HCC. In 2017, Stivarga (regorafenib) and Opdivo (nivolumab) got approved for patients with HCC after being treated with sorafenib, and in 2018, Lenvima (lenvatinib) got approved for patients with unresectable HCC. But, owing to the rapid drug resistance development and toxicities, these treatment options are not completely satisfactory. Therefore, there is an urgent need for new systemic combination therapies that target different signaling mechanisms, thereby decreasing the prospect of cancer cells developing resistance to treatment. In this review, HCC etiology and new therapeutic strategies that include currently approved drugs and other potential candidates of HCC such as Milciclib, palbociclib, galunisertib, ipafricept, and ramucirumab are evaluated.
Collapse
Key Words
- AMP, adenosine monophosphate
- AMPK, AMP-activated protein kinase
- ATP, adenosine 5′-triphosphate
- BMF, Bcl2 modifying factor
- BMI, body mass index
- CDK, cyclin-dependent kinase
- CTGF, connective tissue growth factor
- CTL, cytotoxic T lymphocyte
- CTLA, cytotoxic T-lymphocyte-associated protein
- ECM, extracellular matrix
- EFGR, endothelial growth factor receptor
- EGFR, epidermal growth factor receptor
- EMT, Epithelial–mesenchymal transition
- ERK, extracellular signal-regulated kinase
- FDA, Food and Drug Administration
- GFG, fibroblast growth factor
- HBV, hepatitis B virus
- HBcAg, hepatitis B core antibody
- HBsAg, HBV surface antigen
- HCC, Hepatocellular carcinoma
- HCV, hepatitis B virus
- HDV, hepatitis D virus
- HIF, hypoxia-inducible factor
- HIV, human immunodeficiency virus
- IGFR, insulin-like growth factor
- JAK, janus kinase
- MAPK, mitogen-activated protein kinase
- MDSC, myeloid-derived suppressor cell
- NASH, nonalcoholic steatohepatitis
- NK, natural killer
- NKT, natural killer T cell
- ORR, objective response rate
- OS, overall survival
- PAPSS1, 3′-phosphoadenosine 5′-phosphosulfate synthase 1
- PD-L1, programmed death ligand1
- PD1, programmed cell death protein 1
- PDGFR, platelet-derived growth factor receptor
- PEDF, pigment epithelium-derived factor
- PFS, progression-free survival
- PI3K, phosphoinositide 3-kinases
- PTEN, phosphatase and tensin homolog
- PUMA, p53 upregulated modulator of apoptosis
- RFA, radiofrequency ablation
- Rb, retinoblastoma protein
- SCF, stem cell factor
- SHP1, src homology 2 domain–containing phosphatase 1
- STAT3, signal transducer and activator of transcription 3
- TACE, transarterial chemoembolization
- TGF 1, transforming growth factor-1
- TK, tyrosine kinase
- TKI, Tyrosine kinase inhibitor
- TRKA, tropomyosin receptor kinase A
- Treg, regulatory T cells
- VEGF, vascular endothelial growth factor
- VEGFR, vascular endothelial growth factor receptor
- bFGF, basic fibroblast growth factor
- combination therapy
- cyclin-dependent kinase inhibitors
- hepatocellular carcinoma
- hepatology
- tyrosine kinase inhibitors
Collapse
Affiliation(s)
- Aastha Jindal
- Research and Development Center, Baruch S. Blumberg Institute, Doylestown, PA 18902, USA
- Address for correspondence: Aastha Jindal, Research and Development Center, Baruch S. Blumberg Institute, Doylestown, PA 18902, USA.
| | - Anusha Thadi
- Research and Development Center, Baruch S. Blumberg Institute, Doylestown, PA 18902, USA
| | - Kunwar Shailubhai
- Research and Development Center, Baruch S. Blumberg Institute, Doylestown, PA 18902, USA
- Research & Development, Tiziana Lifesciences, Doylestown, PA 18902, USA
| |
Collapse
|
9
|
Dual inhibitors of hepatitis C virus and hepatocellular carcinoma: design, synthesis and docking studies. Future Sci OA 2017; 4:FSO252. [PMID: 29255624 PMCID: PMC5729604 DOI: 10.4155/fsoa-2017-0075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/11/2017] [Indexed: 01/06/2023] Open
Abstract
Aim Simultaneous inhibition of hepatitis C virus (HCV) and hepatocellular carcinoma (HCC) may enhance anti-HCV effects and reduce resistance and side effects. Results/methodology Novel hybrid derivatives were designed and synthesized to exhibit dual activity against HCV and its associated major complication, HCC. The synthesized compounds were screened for their potential activity against HCV and HCC. Compounds 5f, 5j, 5l, 5p, 5q, 5r, 6c and 6d exhibited potential in vitro anticancer activity against HCC cell line HepG2, while compounds 5a, 5l, 5p and 5v showed in vitro anti-HCV activity. Docking studies suggested that the newly synthesized compounds could suppress HCC through VEGFR2 tyrosine kinase inhibition. Conclusion Compounds 5l and 5p exhibited dual activity against HCV and HCC in vitro.
Collapse
|
10
|
Mandal A, Ganta KK, Chaubey B. Combinations of siRNAs against La Autoantigen with NS5B or hVAP-A Have Additive Effect on Inhibition of HCV Replication. HEPATITIS RESEARCH AND TREATMENT 2016; 2016:9671031. [PMID: 27446609 PMCID: PMC4942654 DOI: 10.1155/2016/9671031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/23/2016] [Accepted: 05/30/2016] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus is major cause of chronic liver diseases such as chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Presently available direct-acting antiviral drugs have improved success rate; however, high cost limits their utilization, especially in developing countries like India. In the present study, we evaluated anti-HCV potential of several siRNAs targeted against the HCV RNA-dependent RNA polymerase NS5B and cellular factors, La autoantigen, PSMA7, and human VAMP-associated protein to intercept different steps of viral life cycle. The target genes were downregulated individually as well as in combinations and their impact on viral replication was evaluated. Individual downregulation of La autoantigen, PSMA7, hVAP-A, and NS5B resulted in inhibition of HCV replication by about 67.2%, 50.7%, 39%, and 52%, respectively. However, antiviral effect was more pronounced when multiple genes were downregulated simultaneously. Combinations of siRNAs against La autoantigen with NS5B or hVAP-A resulted in greater inhibition in HCV replication. Our findings indicate that siRNA is a potential therapeutic tool for inhibiting HCV replication and simultaneously targeting multiple viral steps with the combination of siRNAs is more effective than silencing a single target.
Collapse
Affiliation(s)
- Anirban Mandal
- Centre for Advance Studies, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| | - Krishna Kumar Ganta
- Centre for Advance Studies, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| | - Binay Chaubey
- Centre for Advance Studies, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, UG and MUG, Abrahama 58 Street, 80-307 Gdańsk, Poland
| |
Collapse
|
11
|
Akhtar N, Bilal M, Rizwan M, Khan MA, Khan A. Genotypes of hepatitis C virus in relapsed and non-respondent patients and their response to anti-viral therapy in district Mardan, Khyber Pakhtunkhawa, Pakistan. Asian Pac J Cancer Prev 2015; 16:1037-40. [PMID: 25735327 DOI: 10.7314/apjcp.2015.16.3.1037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Hepatitis C is a blood-borne infectious disease of liver, caused by a small enveloped, positive-single stranded RNA virus, called the hepatitis C virus (HCV). HCV belongs to the Flaviviridae family and has 6 genotypes and more than 100 subtypes. It is estimated that 185 million people are infected with HCV worldwide and 5% of these are in Pakistan. The study was designed to evaluate different genotypes of HCV circulating in District Mardan and to know about the behavior of these genotypes to different anti-viral regimes. In this study 3,800 patients were exposed to interferon alfa-2a plus Ribavirin treatment for 6-months and subjected to real-time PCR to check the viral response. Among these 3,677 (97%) patients showed no detectable HCV RNA while 123 (3%) patients (non-responders) remained positive for HCV RNA. Genotypes of their analyzed showed that most of them belonged to the 3a genotype. Non-responders (123) and relapsed (5) patients were subjected to PEG-interferon and Ribavirin therapy for next 6 months, which resulted into elimination of HCV RNA from 110 patients. The genotypes of the persisting resistant samples to anti-viral treatment were 3b, 2a, 1a and 1b. Furthermore, viral RNA from 6 patients remained un-typed while 4 patients showed mixed infections. HCV was found more resistant to antiviral therapy in females as compared to mals. The age group 36-45 in both females and males was found most affected by infection. In general 3a is the most prevalent genotype circulating in district Mardan and the best anti-viral therapy is PEG-interferon plus Ribavirin but it is common practice that due to the high cost patients receive interferon alfa-2a plus Ribavirin with consequent resistance in 3% patients given this treatment regime.
Collapse
Affiliation(s)
- Noreen Akhtar
- Department of Microbiology, Faculty of Life Science, Abasyn University, Peshawar, Pakistan E-mail :
| | | | | | | | | |
Collapse
|
12
|
Coppola N, Pisaturo M, Zampino R, Macera M, Sagnelli C, Sagnelli E. Hepatitis C virus markers in infection by hepatitis C virus: In the era of directly acting antivirals. World J Gastroenterol 2015; 21:10749-10759. [PMID: 26478667 PMCID: PMC4600577 DOI: 10.3748/wjg.v21.i38.10749] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 07/04/2015] [Accepted: 09/02/2015] [Indexed: 02/06/2023] Open
Abstract
About 130-170 million people are infected with the hepatitis C virus (HCV) worldwide and more than 350000 people die each year of HCV-related liver diseases. The combination of pegylated interferon (Peg-IFN) and ribavirin (RBV) was recommended as the treatment of choice for chronic hepatitis C for nearly a decade. In 2011 the directly acting antivirals (DAA) HCV NS3/4A protease inhibitors, telaprevir and boceprevir, were approved to treat HCV-genotype-1 infection, each in triple combination with Peg-IFN and RBV. These treatments allowed higher rates of SVR than the double Peg-IFN + RBV, but the low tolerability and high pill burden of these triple regimes were responsible for reduced adherence and early treatment discontinuation. The second and third wave DAAs introduced in 2013-2014 enhanced the efficacy and tolerability of anti-HCV treatment. Consequently, the traditional indicators for disease management and predictors of treatment response should be revised in light of these new therapeutic options. This review article will focus on the use of the markers of HCV infection and replication, of laboratory and instrumental data to define the stage of the disease and of predictors, if any, of response to therapy in the DAA era. The article is addressed particularly to physicians who have patients with hepatitis C in care in their everyday clinical practice.
Collapse
|
13
|
Nouroz F, Shaheen S, Mujtaba G, Noreen S. An overview on hepatitis C virus genotypes and its control. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2015. [DOI: 10.1016/j.ejmhg.2015.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
14
|
Coppola N, Pisaturo M, Sagnelli C, Onorato L, Sagnelli E. Role of genetic polymorphisms in hepatitis C virus chronic infection. World J Clin Cases 2015; 3:807-822. [PMID: 26380828 PMCID: PMC4568530 DOI: 10.12998/wjcc.v3.i9.807] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 12/09/2014] [Accepted: 06/08/2015] [Indexed: 02/05/2023] Open
Abstract
AIM: To analyze the host genetics factors influencing the clinical course and the response to antiviral treatment in patients with chronic hepatitis C (CHC).
METHODS: We conducted an electronic search on the PubMed and MEDLINE (2000-2014) databases and Cochrane library (2000-2014). A total of 73 articles were retrieved and their data were extensively evaluated and discussed by the authors and then analyzed in this review article.
RESULTS: Several studies associated polymorphisms in the interleukin 28B gene on chromosome 19 (19q13.13) with a spontaneous viral clearance in acute hepatitis C and with the response to pegylated interferon (Peg-IFN)-based treatment in chronic hepatitis C patients. Other investigations demonstrated that inosine triphosphate pyrophosphatase genetic variants protect hepatitis C virus-genotype-1 CHC patients from ribavirin-induced anemia, and other studies that a polymorphism in the patatin-like phospholipase domain-containing protein 3 was associated with hepatic steatosis in CHC patients. Although not conclusive, some investigations suggested that the vitamin D-associated polymorphisms play an important role in the achievement of sustained virologic response in CHC patients treated with Peg-IFN-based antiviral therapy. Several other polymorphisms have been investigated to ascertain their possible impact on the natural history and on the response to treatment in patients with CHC, but the data are preliminary and warrant confirmation.
CONCLUSION: Several genetic polymorphisms seem to influence the clinical course and the response to antiviral treatment in patients with CHC, suggesting individualized follow up and treatment strategies.
Collapse
|
15
|
Sasaki R, Kanda T, Nakamoto S, Haga Y, Nakamura M, Yasui S, Jiang X, Wu S, Arai M, Yokosuka O. Natural interferon-beta treatment for patients with chronic hepatitis C in Japan. World J Hepatol 2015; 7:1125-1132. [PMID: 26052401 PMCID: PMC4450189 DOI: 10.4254/wjh.v7.i8.1125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 12/19/2014] [Accepted: 02/02/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection can cause liver cirrhosis and hepatocellular carcinoma (HCC). Several studies have demonstrated that the eradication of HCV reduces the occurrence of HCC. In Japan, as many people live to an advanced age, HCV-infected patients are also getting older, and the age at HCC diagnosis has also increased. Although older HCV-infected patients have a risk of developing HCC, the treatment response to peginterferon-alpha plus ribavirin therapy is relatively poor in these patients because of drop-out or discontinuation of this treatment due to adverse events. It is established that the mechanism of action between interferon-alpha and interferon-beta is slightly different. Short-term natural interferon-beta monotherapy is effective for patients with acute hepatitis C and patients infected with HCV genotype 2 and low viral loads. Natural interferon-beta plus ribavirin for 48 wk or for 24 wk are also effective for some patients with HCV genotype 1 or HCV genotype 2. Natural interferon-beta plus ribavirin has been used for certain “difficult-to-treat” HCV-infected patients. In the era of direct-acting anti-virals, natural interferon-beta plus ribavirin may be one of the therapeutic options for special groups of HCV-infected patients. In the near future, signal transduction pathways of interferon-beta will inform further directions.
Collapse
|
16
|
Georgopoulou U, Dimitriadis A, Foka P, Karamichali E, Mamalaki A. Hepcidin and the iron enigma in HCV infection. Virulence 2014; 5:465-76. [PMID: 24626108 PMCID: PMC4063809 DOI: 10.4161/viru.28508] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
An estimated 30-40% of patients with chronic hepatitis C have elevated serum iron, transferrin saturation, and ferritin levels. Clinical data suggest that iron is a co-morbidity factor for disease progression following HCV infection. Iron is essential for a number of fundamental metabolic processes in cells and organisms. Mammalian iron homeostasis is tightly regulated and this is maintained through the coordinated action of sensory and regulatory networks that modulate the expression of iron-related proteins at the transcriptional and/or posttranscriptional levels. Disturbances of iron homeostasis have been implicated in infectious disease pathogenesis. Viruses, similarly to other pathogens, can escape recognition by the immune system, but they need iron from their host to grow and spread. Hepcidin is a 25-aa peptide, present in human serum and urine and represents the key peptide hormone, which modulates iron homeostasis in the body. It is synthesized predominantly by hepatocytes and its mature form is released in circulation. In this review, we discuss recent advances in the exciting crosstalk of molecular mechanisms and cell signaling pathways by which iron and hepcidin production influences HCV-induced liver disease.
Collapse
Affiliation(s)
- Urania Georgopoulou
- Laboratory of Molecular Virology; Hellenic Pasteur Institute; Athens, Greece
| | - Alexios Dimitriadis
- Laboratory of Molecular Biology and Immunobiotechnology; Hellenic Pasteur Institute; Athens, Greece
| | - Pelagia Foka
- Laboratory of Molecular Virology; Hellenic Pasteur Institute; Athens, Greece; Laboratory of Molecular Biology and Immunobiotechnology; Hellenic Pasteur Institute; Athens, Greece
| | - Eirini Karamichali
- Laboratory of Molecular Virology; Hellenic Pasteur Institute; Athens, Greece
| | - Avgi Mamalaki
- Laboratory of Molecular Biology and Immunobiotechnology; Hellenic Pasteur Institute; Athens, Greece
| |
Collapse
|
17
|
Interaction of Hepatitis C Viral Proteins with Cellular Oncoproteins in the Induction of Liver Cancer. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/351407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hepatitis C virus infection is a major health problem all over the world. A large proportion of patients infected by HCV develop liver cirrhosis or cancer. However, the mechanism(s) remain to be elucidated. Since HCV does not carry any known oncogene, it is thought that interaction between virally encoded proteins and host proteins is responsible for carcinogenesis. Many crucial interactions between HCV-encoded proteins and host proteins have been reported. In this review we focus on the interaction of viral proteins with important regulators of cell cycle—oncoproteins YB-1, p53, and cyclin D1—which play a major role in cell proliferation, apoptosis, DNA repair, and genomic stability. Genetic variants of HCV accumulate in patients and alter these interactions of host cell proteins. It is a battle between the virus and host and the final outcome depends on the winner; if the host succeeds in clearing the virus the patient may not develop serious liver diseases. On the other hand, if the virus dominates by evolving quasispecies which code for altered proteins that interact differently with host proteins, or induce mutations in host protooncogenes, then the patient may develop liver cirrhosis and/or liver cancer.
Collapse
|
18
|
Kanda T, Yokosuka O, Omata M. Treatment of hepatitis C virus infection in the future. Clin Transl Med 2013; 2:9. [PMID: 23577631 PMCID: PMC3637513 DOI: 10.1186/2001-1326-2-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 04/08/2013] [Indexed: 12/13/2022] Open
Abstract
Two direct-acting antivirals (DAAs) against hepatitis C virus (HCV): telaprevir and boceprevir, are now available in combination with peginterferon plus ribavirin for the treatment of chronic hepatitis C infection. Although these drugs are potent inhibitors of HCV replication, they occasionally result in severe adverse events. In the present clinical trials, in their stead, several second-generation DAAs are being investigated. Most of them are being viewed with high expectations, but they also require the combination with peginterferon plus ribavirin. In the near future, we might be using all-oral DAAs and interferon-free regimens for the treatment of HCV-infected patients, and these would be potent inhibitors of HCV and have less adverse events.
Collapse
Affiliation(s)
- Tatsuo Kanda
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba (260-8670), Japan.
| | | | | |
Collapse
|