1
|
Rahman MA, Lee SH, Park HS, Min CW, Woo JH, Choi BR, Rahman MM, Lee KW. Light Quality Plays a Crucial Role in Regulating Germination, Photosynthetic Efficiency, Plant Development, Reactive Oxygen Species Production, Antioxidant Enzyme Activity, and Nutrient Acquisition in Alfalfa. Int J Mol Sci 2025; 26:360. [PMID: 39796215 PMCID: PMC11720064 DOI: 10.3390/ijms26010360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 01/13/2025] Open
Abstract
Light is a vital regulator of photosynthesis, energy production, plant growth, and morphogenesis. Although these key physiological processes are well understood, the effects of light quality on the pigment content, oxidative stress, reactive oxygen species (ROS) production, antioxidant defense systems, and biomass yield of plants remain largely unexplored. In this study, we applied different light-emitting diode (LED) treatments, including white light, red light, blue light, and a red+blue (1:1) light combination, to evaluate the traits mentioned above in alfalfa (Medicago sativa L.). Fluorescence staining showed that red light significantly triggered the oxidative stress indicators compared to blue and white light, while the combined red and blue light treatment significantly reduced the ROS (O2•-, H2O2) intensity in alfalfa seedlings. Interestingly, the combined light treatment significantly boosted the seed germination rate (%), maximum photochemical quantum yield of PSII (Fv/Fm), leaf greenness (SPAD score), photosynthetic pigment levels (chlorophyll a, chlorophyll b, and carotenoids), and plant biomass yield in alfalfa seedlings. The red and/or combined (red+blue) light treatments significantly regulated antioxidant enzymes (SOD, CAT, APX, and GR) and the expression of genes related to the ascorbate-glutathione (AsA-GSH) pathway, including monodehydroascorbate reductase (MsMDHAR), dehydroascorbate reductase (MsDHAR), ascorbate peroxidase (MsAPX), and glutathione reductase (MsGR). These results indicate that light quality is crucial for regulating the morphological, physiological, and molecular traits linked to alfalfa improvement. These findings suggest a new approach to enhancing the adaptation, as well as the morphological and agronomic yield, of alfalfa and forage legumes through light-quality-mediated improvement.
Collapse
Affiliation(s)
- Md Atikur Rahman
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea; (M.A.R.); (S.-H.L.); (H.S.P.); (C.-W.M.); (J.H.W.); (B.R.C.)
- ABEx Bio-Research Center, Dhaka 1230, Bangladesh
| | - Sang-Hoon Lee
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea; (M.A.R.); (S.-H.L.); (H.S.P.); (C.-W.M.); (J.H.W.); (B.R.C.)
| | - Hyung Soo Park
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea; (M.A.R.); (S.-H.L.); (H.S.P.); (C.-W.M.); (J.H.W.); (B.R.C.)
| | - Chang-Woo Min
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea; (M.A.R.); (S.-H.L.); (H.S.P.); (C.-W.M.); (J.H.W.); (B.R.C.)
| | - Jae Hoon Woo
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea; (M.A.R.); (S.-H.L.); (H.S.P.); (C.-W.M.); (J.H.W.); (B.R.C.)
| | - Bo Ram Choi
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea; (M.A.R.); (S.-H.L.); (H.S.P.); (C.-W.M.); (J.H.W.); (B.R.C.)
| | - Md. Mezanur Rahman
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA;
| | - Ki-Won Lee
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea; (M.A.R.); (S.-H.L.); (H.S.P.); (C.-W.M.); (J.H.W.); (B.R.C.)
| |
Collapse
|
2
|
Mittra PK, Rahman MA, Roy SK, Kwon SJ, Yun SH, Kun C, Zhou M, Katsube-Tanaka T, Shiraiwa T, Woo SH. Deciphering proteomic mechanisms explaining the role of glutathione as an aid in improving plant fitness and tolerance against cadmium-toxicity in Brassica napus L. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134262. [PMID: 38640678 DOI: 10.1016/j.jhazmat.2024.134262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
Cadmium (Cd) hazard is a serious limitation to plants, soils and environments. Cd-toxicity causes stunted growth, chlorosis, necrosis, and plant yield loss. Thus, ecofriendly strategies with understanding of molecular mechanisms of Cd-tolerance in plants is highly demandable. The Cd-toxicity caused plant growth retardation, leaf chlorosis and cellular damages, where the glutathione (GSH) enhanced plant fitness and Cd-toxicity in Brassica through Cd accumulation and antioxidant defense. A high-throughput proteome approach screened 4947 proteins, wherein 370 were differently abundant, 164 were upregulated and 206 were downregulated. These proteins involved in energy and carbohydrate metabolism, CO2 assimilation and photosynthesis, signal transduction and protein metabolism, antioxidant defense response, heavy metal detoxification, cytoskeleton and cell wall structure, and plant development in Brassica. Interestingly, several key proteins including glutathione S-transferase F9 (A0A078GBY1), ATP sulfurylase 2 (A0A078GW82), cystine lyase CORI3 (A0A078FC13), ferredoxin-dependent glutamate synthase 1 (A0A078HXC0), glutaredoxin-C5 (A0A078ILU9), glutaredoxin-C2 (A0A078HHH4) actively involved in antioxidant defense and sulfur assimilation-mediated Cd detoxification process confirmed by their interactome analyses. These candidate proteins shared common gene networks associated with plant fitness, Cd-detoxification and tolerance in Brassica. The proteome insights may encourage breeders for enhancing multi-omics assisted Cd-tolerance in Brassica, and GSH-mediated hazard free oil seed crop production for global food security.
Collapse
Affiliation(s)
- Probir Kumar Mittra
- Department of Crop Science, Chungbuk National University, Cheong-ju 28644, Republic of Korea
| | - Md Atikur Rahman
- Grassland and Forage Division, Rural Development Administration, National Institute of Animal Science, Cheonan 31000, Republic of Korea
| | - Swapan Kumar Roy
- College of Agricultural Sciences, IUBAT-International University of Business Agriculture and Technology, 4 Embankment Drive Road, Sector 10 Uttara Model Town, Dhaka 1230, Bangladesh
| | - Soo-Jeong Kwon
- Department of Crop Science, Chungbuk National University, Cheong-ju 28644, Republic of Korea
| | - Sung Ho Yun
- Bio-Chemical Analysis Team, Center for Research Equipment, Korea Basic Science Institute, Ochang, Cheong-ju 28119, Republic of Korea
| | - Cho Kun
- Bio-Chemical Analysis Team, Center for Research Equipment, Korea Basic Science Institute, Ochang, Cheong-ju 28119, Republic of Korea
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 South Zhongguancun Street, Haidian, Beijing 100081, China
| | - Tomoyuki Katsube-Tanaka
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tatsuhiko Shiraiwa
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Sun-Hee Woo
- Department of Crop Science, Chungbuk National University, Cheong-ju 28644, Republic of Korea.
| |
Collapse
|
3
|
Chen X, Tang Y, Zhang H, Zhang X, Sun X, Zang X, Xu N. Physiological, Transcriptome, and Metabolome Analyses Reveal the Tolerance to Cu Toxicity in Red Macroalgae Gracilariopsis lemaneiformis. Int J Mol Sci 2024; 25:4770. [PMID: 38731988 PMCID: PMC11083833 DOI: 10.3390/ijms25094770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Heavy metal copper (Cu) will inevitably impact the marine macroalgae Gracilariopsis lemaneiformis (G. lemaneiformis), which is a culture of economic importance along China's coastline. In this study, the detoxification mechanism of Cu stress on G. lemaneiformis was revealed by assessing physiological indicators in conjunction with transcriptome and metabolome analyses at 1 d after Cu stress. Our findings revealed that 25 μM Cu stimulated ROS synthesis and led to the enzymatic oxidation of arachidonic acid residues. This process subsequently impeded G. lemaneiformis growth by suppressing photosynthesis, nitrogen metabolism, protein synthesis, etc. The entry of Cu ions into the algae was facilitated by ZIPs and IRT transporters, presenting as Cu2+. Furthermore, there was an up-regulation of Cu efflux transporters HMA5 and ABC family transporters to achieve compartmentation to mitigate the toxicity. The results revealed that G. lemaneiformis elevated the antioxidant enzyme superoxide dismutase and ascorbate-glutathione cycle to maintain ROS homeostasis. Additionally, metabolites such as flavonoids, 3-O-methylgallic acid, 3-hydroxy-4-keto-gama-carotene, and eicosapentaenoic acid were up-regulated compared with the control, indicating that they might play roles in response to Cu stress. In summary, this study offers a comprehensive insight into the detoxification mechanisms driving the responses of G. lemaneiformis to Cu exposure.
Collapse
Affiliation(s)
- Xiaojiao Chen
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (X.C.); (Y.T.); (H.Z.); (X.Z.); (X.S.)
| | - Yueyao Tang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (X.C.); (Y.T.); (H.Z.); (X.Z.); (X.S.)
| | - Hao Zhang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (X.C.); (Y.T.); (H.Z.); (X.Z.); (X.S.)
| | - Xiaoqian Zhang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (X.C.); (Y.T.); (H.Z.); (X.Z.); (X.S.)
| | - Xue Sun
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (X.C.); (Y.T.); (H.Z.); (X.Z.); (X.S.)
| | - Xiaonan Zang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China;
| | - Nianjun Xu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (X.C.); (Y.T.); (H.Z.); (X.Z.); (X.S.)
| |
Collapse
|
4
|
Mittra PK, Roy SK, Rahman MA, Naimuzzaman M, Kwon SJ, Yun SH, Cho K, Katsube-Tanaka T, Shiraiwa T, Woo SH. Proteome insights of citric acid-mediated cadmium toxicity tolerance in Brassica napus L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:115461-115479. [PMID: 37882925 DOI: 10.1007/s11356-023-30442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
Cadmium (Cd) is a toxic substance that is uptake by plants from soils, Cd easily transfers into the food chain. Considering global food security, eco-friendly, cost-effective, and metal detoxification strategies are highly demandable for sustainable food crop production. The purpose of this study was to investigate how citric acid (CA) alleviates or tolerates Cd toxicity in Brassica using a proteome approach. In this study, the global proteome level was significantly altered under Cd toxicity with or without CA supplementation in Brassica. A total of 4947 proteins were identified using the gel-free proteome approach. Out of these, 476 proteins showed differential abundance between the treatment groups, wherein 316 were upregulated and 160 were downregulated. The gene ontology analysis reveals that differentially abundant proteins were involved in different biological processes including energy and carbohydrate metabolism, CO2 assimilation and photosynthesis, signal transduction and protein metabolism, antioxidant defense, heavy metal detoxification, plant development, and cytoskeleton and cell wall structure in Brassica leaves. Interestingly, several candidate proteins such as superoxide dismutase (A0A078GZ68) L-ascorbate peroxidase 3 (A0A078HSG4), glutamine synthetase (A0A078HLB2), glutathione S-transferase DHAR1 (A0A078HPN8), glutamine synthetase (A0A078HLB2), cysteine synthase (A0A078GAD3), S-adenosylmethionine synthase 2 (A0A078JDL6), and thiosulfate/3-mercaptopyruvate sulfur transferase 2 (A0A078H905) were involved in antioxidant defense system and sulfur assimilation-involving Cd-detoxification process in Brassica. These findings provide new proteome insights into CA-mediated Cd-toxicity alleviation in Brassica, which might be useful to oilseed crop breeders for enhancing heavy metal tolerance in Brassica using the breeding program, with sustainable and smart Brassica production in a metal-toxic environment.
Collapse
Affiliation(s)
- Probir Kumar Mittra
- Department of Crop Science, Chungbuk National University, Cheong-Ju, 28644, Republic of Korea
| | - Swapan Kumar Roy
- College of Agricultural Sciences, IUBAT-International University of Business Agriculture and Technology, 4 Embankment Drive Road, Sector 10 Uttara Model Town, Dhaka, 1230, Bangladesh
| | - Md Atikur Rahman
- Grassland and Forage Division, Rural Development Administration, National Institute of Animal Science, Cheonan, 31000, Republic of Korea
| | - Mollah Naimuzzaman
- College of Agricultural Sciences, IUBAT-International University of Business Agriculture and Technology, 4 Embankment Drive Road, Sector 10 Uttara Model Town, Dhaka, 1230, Bangladesh
| | - Soo-Jeong Kwon
- Department of Crop Science, Chungbuk National University, Cheong-Ju, 28644, Republic of Korea
| | - Sung Ho Yun
- Bio-Chemical Analysis Team, Center for Research Equipment, Korea Basic Science Institute, Ochang, Cheong-Ju, 28119, Republic of Korea
| | - Kun Cho
- Bio-Chemical Analysis Team, Center for Research Equipment, Korea Basic Science Institute, Ochang, Cheong-Ju, 28119, Republic of Korea
| | - Tomoyuki Katsube-Tanaka
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Tatsuhiko Shiraiwa
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Sun-Hee Woo
- Department of Crop Science, Chungbuk National University, Cheong-Ju, 28644, Republic of Korea.
| |
Collapse
|
5
|
Wang H, Yu J, Zhu B, Gu L, Wang H, Du X, Zeng T, Tang H. The SbbHLH041- SbEXPA11 Module Enhances Cadmium Accumulation and Rescues Biomass by Increasing Photosynthetic Efficiency in Sorghum. Int J Mol Sci 2023; 24:13061. [PMID: 37685867 PMCID: PMC10487693 DOI: 10.3390/ijms241713061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
In plants, expansin genes are responsive to heavy metal exposure. To study the bioremediary potential of this important gene family, we discovered a root-expressed expansin gene in sorghum, SbEXPA11, which is notably upregulated following cadmium (Cd) exposure. However, the mechanism underlying the Cd detoxification and accumulation mediated by SbEXPA11 in sorghum remains unclear. We overexpressed SbEXPA11 in sorghum and compared wild-type (WT) and SbEXPA11-overexpressing transgenic sorghum in terms of Cd accumulation and physiological indices following Cd. Compared with the WT, we found that SbEXPA11 mediates Cd tolerance by exerting reactive oxygen species (ROS)-scavenging effects through upregulating the expression of antioxidant enzymes. Moreover, the overexpression of SbEXPA11 rescued biomass production by increasing the photosynthetic efficiency of transgenic plants. In the pot experiment with a dosage of 10 mg/kg Cd, transgenic sorghum plants demonstrated higher efficacy in reducing the Cd content of the soil (8.62 mg/kg) compared to WT sorghum plants (9.51 mg/kg). Subsequent analysis revealed that the SbbHLH041 transcription factor has the ability to induce SbEXPA11 expression through interacting with the E-box located within the SbEXPA11 promoter. These findings suggest that the SbbHLH041-SbEXPA11 cascade module may be beneficial for the development of phytoremediary sorghum varieties.
Collapse
Affiliation(s)
- Huinan Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (J.Y.); (B.Z.); (L.G.); (H.W.); (X.D.)
| | - Junxing Yu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (J.Y.); (B.Z.); (L.G.); (H.W.); (X.D.)
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (J.Y.); (B.Z.); (L.G.); (H.W.); (X.D.)
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (J.Y.); (B.Z.); (L.G.); (H.W.); (X.D.)
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (J.Y.); (B.Z.); (L.G.); (H.W.); (X.D.)
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (J.Y.); (B.Z.); (L.G.); (H.W.); (X.D.)
| | - Tuo Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (H.W.); (J.Y.); (B.Z.); (L.G.); (H.W.); (X.D.)
| | - Heng Tang
- National Key Laboratory of Wheat Breeding, Agronomy College, Shandong Agricultural University, Tai’an 271002, China
| |
Collapse
|
6
|
Song L, Xu X, Zheng Y, Hong W, Li X, Ai Y, Wang Y, Zhang Z, Chen H, Huang Y, Zhang J, Zhou J. Dynamic mechanisms of cadmium accumulation and detoxification by Lolium perenne grown in soil inoculated with the cadmium-tolerant bacterium strain Cdq4-2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162314. [PMID: 36805060 DOI: 10.1016/j.scitotenv.2023.162314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) contamination is a serious threat to food security and human health. The cost-effective in situ method of remediating Cd-contaminated soil uses Cd-tolerant microorganisms and Cd-enriching plants. The present study investigated the dynamic effects of inoculating soil with a Cd-tolerant bacteria strain Cdq4-2 (Enterococcus sp.) on the physiological and biochemical properties of perennial ryegrass Lolium perenne. The combined effects of remediating Cd-contaminated soil with this plant and these bacteria were also studied. An experiment was used to compare three treatments of L. perenne crops: 1) CK (control soil without Cd), 2) C (20 mg/kg Cd-contaminated soil), and 3) CB (20 mg/kg Cd-contaminated soil inoculated with bacteria Cdq4-2). The results show that compared with treatment C, the aboveground biomass, underground biomass, and total biomass of CB were 46.83-69.31%, 131.76-462.79%, and 62.65-101.53% greater, respectively. The superoxide dismutase activity of CB was 17.62-54.63% lower, while its peroxidase activity was 67.49-146.51% higher. The malondialdehyde concentration in CB was 30.40-40.24% more significant, the ascorbic acid concentration was 6.20-188.22% higher, and its glutathione concentration was 16.25-63.63% lower. The Cd concentrations of aboveground parts of a plant in treatment CB were 18.55% and 30.53% higher than those of C at days 20 and 40, respectively, while that of underground parts was 24.25% higher on day 40. The bioconcentration factors of aboveground and underground parts were higher in treatment CB on day 40. The inoculation of Cd-contaminated soils with bacteria Cdq4-2 promoted growth in L. perenne, improved its antioxidant ability, and promoted the absorption, translocation, and accumulation of Cd. Hence, it improved the effectiveness of L. perenne in remediating Cd-contaminated soils.
Collapse
Affiliation(s)
- Lanping Song
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Xiaoyang Xu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Yuanyuan Zheng
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Wanyue Hong
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Xiaoping Li
- Collaborative Innovation Center of Southern Modern Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yanmei Ai
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Yang Wang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Zekun Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Hong Chen
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Yongjie Huang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Jie Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Jihai Zhou
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Southern Modern Forestry, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
7
|
Gao YF, Jia X, Zhao YH, Ding XY, Zhang CY, Feng XJ. Glomus mosseae improved the adaptability of alfalfa ( Medicago sativa L.) to the coexistence of cadmium-polluted soils and elevated air temperature. FRONTIERS IN PLANT SCIENCE 2023; 14:1064732. [PMID: 36968359 PMCID: PMC10033771 DOI: 10.3389/fpls.2023.1064732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The coexistence of heavy metal-polluted soils and global warming poses serious threats to plants. Many studies indicate that arbuscular mycorrhizal fungi (AMF) can enhance the resistance of plants to adverse environments such as heavy metals and high temperature. However, few studies are carried out to explore the regulation of AMF on the adaptability of plants to the coexistence of heavy metals and elevated temperature (ET). Here, we investigated the regulation of Glomus mosseae on the adaptability of alfalfa (Medicago sativa L.) to the coexistence of cadmium (Cd)-polluted soils and ET. G. mosseae significantly enhanced total chlorophyll and carbon (C) content in the shoots by 15.6% and 3.0%, respectively, and Cd, nitrogen (N), and phosphorus (P) uptake by the roots by 63.3%, 28.9%, and 85.2%, respectively, under Cd + ET. G. mosseae significantly increased ascorbate peroxidase activity, peroxidase (POD) gene expression, and soluble proteins content in the shoots by 13.4%, 130.3%, and 33.8%, respectively, and significantly decreased ascorbic acid (AsA), phytochelatins (PCs), and malondialdehyde (MDA) contents by 7.4%, 23.2%, and 6.5%, respectively, under ET + Cd. Additionally, G. mosseae colonization led to significant increases in POD (13.0%) and catalase (46.5%) activities, Cu/Zn-superoxide dismutase gene expression (33.5%), and MDA (6.6%), glutathione (22.2%), AsA (10.3%), cysteine (101.0%), PCs (13.8%), soluble sugars (17.5%), and proteins (43.4%) contents in the roots and carotenoids (23.2%) under ET + Cd. Cadmium, C, N, G. mosseae colonization rate, and chlorophyll significantly influenced shoots defenses and Cd, C, N, P, G. mosseae colonization rate, and sulfur significantly affected root defenses. In conclusion, G. mosseae obviously improved the defense capacity of alfalfa under ET + Cd. The results could improve our understanding of the regulation of AMF on the adaptability of plants to the coexistence of heavy metals and global warming and phytoremediation of heavy metal-polluted sites under global warming scenarios.
Collapse
Affiliation(s)
- Yun-feng Gao
- Shaanxi Key Laboratory of Land Consolidation, School of Land Engineering, Chang’an University, Xi’an, China
| | - Xia Jia
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, School of Water and Environment, Chang’an University, Xi’an, China
| | - Yong-hua Zhao
- Shaanxi Key Laboratory of Land Consolidation, School of Land Engineering, Chang’an University, Xi’an, China
| | - Xiao-yi Ding
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, School of Water and Environment, Chang’an University, Xi’an, China
| | - Chun-yan Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, School of Water and Environment, Chang’an University, Xi’an, China
| | - Xiao-juan Feng
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, School of Water and Environment, Chang’an University, Xi’an, China
| |
Collapse
|
8
|
Seregin IV, Kozhevnikova AD. Phytochelatins: Sulfur-Containing Metal(loid)-Chelating Ligands in Plants. Int J Mol Sci 2023; 24:2430. [PMID: 36768751 PMCID: PMC9917255 DOI: 10.3390/ijms24032430] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Phytochelatins (PCs) are small cysteine-rich peptides capable of binding metal(loid)s via SH-groups. Although the biosynthesis of PCs can be induced in vivo by various metal(loid)s, PCs are mainly involved in the detoxification of cadmium and arsenic (III), as well as mercury, zinc, lead, and copper ions, which have high affinities for S-containing ligands. The present review provides a comprehensive account of the recent data on PC biosynthesis, structure, and role in metal(loid) transport and sequestration in the vacuoles of plant cells. A comparative analysis of PC accumulation in hyperaccumulator plants, which accumulate metal(loid)s in their shoots, and in the excluders, which accumulate metal(loid)s in their roots, investigates the question of whether the endogenous PC concentration determines a plant's tolerance to metal(loid)s. Summarizing the available data, it can be concluded that PCs are not involved in metal(loid) hyperaccumulation machinery, though they play a key role in metal(loid) homeostasis. Unraveling the physiological role of metal(loid)-binding ligands is a fundamental problem of modern molecular biology, plant physiology, ionomics, and toxicology, and is important for the development of technologies used in phytoremediation, biofortification, and phytomining.
Collapse
Affiliation(s)
- Ilya V. Seregin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St., 35, 127276 Moscow, Russia
| | | |
Collapse
|
9
|
Chen L, Beiyuan J, Hu W, Zhang Z, Duan C, Cui Q, Zhu X, He H, Huang X, Fang L. Phytoremediation of potentially toxic elements (PTEs) contaminated soils using alfalfa (Medicago sativa L.): A comprehensive review. CHEMOSPHERE 2022; 293:133577. [PMID: 35016965 DOI: 10.1016/j.chemosphere.2022.133577] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Soil contamination with potentially toxic elements (PTEs) is an increasing environmental problem, posing serious threats to the living organisms. Phytoremediation is a sustainable and highly accepted technology for remediation of PTE-contaminated soils. Alfalfa has been widely adopted for the phytoremediation of PTE-contaminated soils due to its large biomass productivity, high PTE tolerance, and strong capacity to take up PTEs. However, there are still no literature reviews systematically summarized the potential of alfalfa in the phytoremediation. Therefore, we review the available literatures that present its PTE uptake, phytotoxicity, tolerance mechanisms, and aided techniques improving the phytoremediation efficiency. In this review, alfalfa shows high amounts of PTEs accumulation, especially in their root tissue. Meanwhile, the inner mechanisms of PTE tolerance and accumulation in alfalfa are discussed including: (i) the activation of antioxidant enzyme system, (ii) subcellular localization, (iii) production of glutathione, phytochelatins, and proline, and (iv) regulation of gene expression. Indeed, excessive PTE can overcome the defense system, which causes oxidative damage in alfalfa plants, thereby inhibiting growth and physiological processes and weakening the ability of PTE uptake. Till now, several approaches have been developed to improve the tolerance and/or accumulation of PTE in alfalfa plants as follows: (i) selection of PTE tolerant cultivars, (ii) applying plant growth regulators, (iii) addition of chelating agents, fertilizer, and biochar materials, and (iv) inoculation of soil microbes. Finally, we indicate that the selection of PTE-tolerant cultivars along with inoculation of soil microbes may be an efficient and eco-friendly strategy of the soil PTE phytoremediation.
Collapse
Affiliation(s)
- Li Chen
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China
| | - Weifang Hu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China
| | - Zhiqing Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Chenjiao Duan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Xiaozhen Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Xuguang Huang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China
| | - Linchuan Fang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China.
| |
Collapse
|