1
|
Yinda LEDO, Onanga R, Obiang CS, Begouabe H, Akomo-Okoue EF, Obame-Nkoghe J, Mitola R, Ondo JP, Atome GRN, Engonga LCO, Ibrahim, Setchell JM, Godreuil S. Antibacterial and antioxidant activities of plants consumed by western lowland gorilla (Gorilla gorilla gorilla) in Gabon. PLoS One 2024; 19:e0306957. [PMID: 39259705 PMCID: PMC11389915 DOI: 10.1371/journal.pone.0306957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 06/26/2024] [Indexed: 09/13/2024] Open
Abstract
Zoopharmacognosy is the study of the self-medication behaviors of non-human animals that use plant, animal or soil items as remedies. Recent studies have shown that some of the plants employed by animals may also be used for the same therapeutic purposes in humans. The aim of this study was to determine the antioxidant and antibacterial activity of Ceiba pentandra, Myrianthus arboreus, Ficus subspecies (ssp.) and Milicia excelsa bark crude extracts (BCE), plants consumed by western lowland gorillas (Gorilla gorilla gorilla) in Moukalaba-Doudou National Park (MDNP) and used in traditional medicine, and then to characterize their phytochemical compounds. DPPH (2,2-Diphenyl-1-Picrylhydrazyl), phosphomolybdenum complex and β-carotene bleaching methods were used to assess antioxidant activity. Antimicrobial susceptibility testing was performed using the diffusion method, while minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were assessed using the microdilution method. The highest level of total phenolics was found in Myrianthus arboreus aqueous extract [385.83 ± 3.99 mg [gallic acid equivalent (GAE)/g]. Total flavonoid (134.46 ± 3.39) mg quercetin equivalent (QE)/100 g of extract] were highest in Milicia excelsa, tannin [(272.44 ± 3.39) mg tannic acid equivalent (TAE)/100 g of extract] in Myrianthus arboreus and proanthocyanidin [(404.33 ± 3.39) mg apple procyanidins equivalent (APE)/100 g of extract] in Ceiba pentandra. Ficus ssp. (IC50 1.34 ±3.36 μg/mL; AAI 18.57 ± 0.203) ethanolic BCE and Milicia excelsa (IC50 2.07 ± 3.37 μg/mL; AAI 12.03 ± 0.711) showed the strongest antioxidant activity. Myrianthus arboreus ethanolic BCE (73.25 ± 5.29) and Milicia excelsa aqueous BCE (38.67 ± 0.27) showed the strongest percentage of total antioxidant capacity (TAC). Ceiba pentandra ethanolic BCE (152.06 ± 19.11 mg AAE/g) and Ficus ssp aqueous BCE (124.33 ± 39.05 mg AAE/g) showed strongest relative antioxidant activity (RAA). The plant BCE showed antimicrobial activity against multidrug resistant (MDR) E. coli (DECs) isolates, with MICs varying from 1.56 to 50 mg/mL and inhibition diameters ranging from 7.34 ± 0.57 to 13.67 ± 0.57mm. Several families of compounds were found, including total phenolic compounds, flavonoids, tannins and proanthocyanidins were found in the plant BCEs. The plant BCEs showed antioxidant activities with free radical scavenging and antimicrobial activities against 10 MDR E. coli (DECs) isolates, and could be a promising novel source for new drug discovery.
Collapse
Affiliation(s)
| | - Richard Onanga
- Laboratory of Bacteriology, Interdisciplinary Medical Research Center of Franceville, Franceville, Gabon
| | - Cédric Sima Obiang
- Laboratory of Research in Biochemistry (LAREBIO), University of Sciences and Technology of Masuku (USTM), Franceville, Gabon
| | - Herman Begouabe
- Laboratory of Research in Biochemistry (LAREBIO), University of Sciences and Technology of Masuku (USTM), Franceville, Gabon
| | | | - Judicaël Obame-Nkoghe
- Unity of Vector Ecology, Interdisciplinary Medical Research Center of Franceville, Franceville, Gabon
| | - Roland Mitola
- Laboratory of Biology, University of Science and Technology of Masuku, Franceville, Gabon
| | - Joseph-Privat Ondo
- Laboratory of Research in Biochemistry (LAREBIO), University of Sciences and Technology of Masuku (USTM), Franceville, Gabon
| | - Guy-Roger Ndong Atome
- Laboratory of Research in Biochemistry (LAREBIO), University of Sciences and Technology of Masuku (USTM), Franceville, Gabon
| | - Louis-Clément Obame Engonga
- Laboratory of Research in Biochemistry (LAREBIO), University of Sciences and Technology of Masuku (USTM), Franceville, Gabon
| | - Ibrahim
- Laboratory of Biology, University of Science and Technology of Masuku, Franceville, Gabon
| | - Joanna M Setchell
- Department of Anthropology, Université de Durham, Durham, United Kingdom
| | - Sylvain Godreuil
- Laboratoire de Bactériologie, CHU de Montpellier, UMR MIVEGEC (IRD, CNRS, Université de Montpelier), Montpellier, France
| |
Collapse
|
2
|
Rashad M, Sampò S, Cataldi A, Zara S. Biological activities of gastropods secretions: snail and slug slime. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:42. [PMID: 37870705 PMCID: PMC10593653 DOI: 10.1007/s13659-023-00404-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023]
Abstract
Gastropods, a mollusk class including slugs and snails, represent an extraordinarily diverse and ecologically significant group of organisms featuring the largest class of invertebrates. They can be classified as aquatic and terrestrial animals having coiled shells, although some species have reduced or absent shells. Their unique body structure includes a muscular foot for locomotion, a visceral mass containing essential organs, and a distinct head region with sensory organs such as tentacles and eyes. They are used to secrete a complex mixture of glycoproteins, enzymes, peptides, mucus and other bioactive compounds, namely slime, which represents a tool to allow locomotion, protection, and interaction within different habitats. The biological activities of the slime have attracted considerable interest due to their diverse and potentially valuable properties ranging from defense mechanisms to potential therapeutic applications in wound healing, antimicrobial therapy, management of inflammation, and neurological disorders. This review aims at exploring the beneficial effects of snail and slug slime focusing, in particular, on the improvement of the biological processes underlying them. Continued exploration of the intricate components of these slimy secretions promises to discover new bioactive molecules with diverse applications in various scientific and industrial fields.
Collapse
Affiliation(s)
- Muhammad Rashad
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via Dei Vestini 31, 66100, Chieti, Italy
| | - Simone Sampò
- International Institution of Heliciculture of Cherasco - Lumacheria Italiana Srl, Corso Einaudi 40, 12062, Cherasco, Italy
| | - Amelia Cataldi
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via Dei Vestini 31, 66100, Chieti, Italy
| | - Susi Zara
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via Dei Vestini 31, 66100, Chieti, Italy.
| |
Collapse
|
3
|
Hegde M, Girisa S, Naliyadhara N, Kumar A, Alqahtani MS, Abbas M, Mohan CD, Warrier S, Hui KM, Rangappa KS, Sethi G, Kunnumakkara AB. Natural compounds targeting nuclear receptors for effective cancer therapy. Cancer Metastasis Rev 2023; 42:765-822. [PMID: 36482154 DOI: 10.1007/s10555-022-10068-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022]
Abstract
Human nuclear receptors (NRs) are a family of forty-eight transcription factors that modulate gene expression both spatially and temporally. Numerous biochemical, physiological, and pathological processes including cell survival, proliferation, differentiation, metabolism, immune modulation, development, reproduction, and aging are extensively orchestrated by different NRs. The involvement of dysregulated NRs and NR-mediated signaling pathways in driving cancer cell hallmarks has been thoroughly investigated. Targeting NRs has been one of the major focuses of drug development strategies for cancer interventions. Interestingly, rapid progress in molecular biology and drug screening reveals that the naturally occurring compounds are promising modern oncology drugs which are free of potentially inevitable repercussions that are associated with synthetic compounds. Therefore, the purpose of this review is to draw our attention to the potential therapeutic effects of various classes of natural compounds that target NRs such as phytochemicals, dietary components, venom constituents, royal jelly-derived compounds, and microbial derivatives in the establishment of novel and safe medications for cancer treatment. This review also emphasizes molecular mechanisms and signaling pathways that are leveraged to promote the anti-cancer effects of these natural compounds. We have also critically reviewed and assessed the advantages and limitations of current preclinical and clinical studies on this subject for cancer prophylaxis. This might subsequently pave the way for new paradigms in the discovery of drugs that target specific cancer types.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nikunj Naliyadhara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Michael Atiyah Building, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, 35712, Gamasa, Egypt
| | | | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
- Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, 169610, Singapore
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
4
|
Biodiversity: the overlooked source of human health. Trends Mol Med 2023; 29:173-187. [PMID: 36585352 DOI: 10.1016/j.molmed.2022.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/27/2022] [Accepted: 12/07/2022] [Indexed: 12/29/2022]
Abstract
Biodiversity is the measure of the variation of lifeforms in a given ecological system. Biodiversity provides ecosystems with the robustness, stability, and resilience that sustains them. This is ultimately essential for our survival because we depend on the services that natural ecosystems provide (food, fresh water, air, climate, and medicine). Despite this, human activity is driving an unprecedented rate of biodiversity decline, which may jeopardize the life-support systems of the planet if no urgent action is taken. In this article we show why biodiversity is essential for human health. We raise our case and focus on the biomedicine services that are enabled by biodiversity, and we present known and novel approaches to promote biodiversity conservation.
Collapse
|
5
|
Phytoestrogens and Health Effects. Nutrients 2023; 15:nu15020317. [PMID: 36678189 PMCID: PMC9864699 DOI: 10.3390/nu15020317] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
Phytoestrogens are literally estrogenic substances of plant origin. Although these substances are useful for plants in many aspects, their estrogenic properties are essentially relevant to their predators. As such, phytoestrogens can be considered to be substances potentially dedicated to plant-predator interaction. Therefore, it is not surprising to note that the word phytoestrogen comes from the early discovery of estrogenic effects in grazing animals and humans. Here, several compounds whose activities have been discovered at nutritional concentrations in animals and humans are examined. The substances analyzed belong to several chemical families, i.e., the flavanones, the coumestans, the resorcylic acid lactones, the isoflavones, and the enterolignans. Following their definition and the evocation of their role in plants, their metabolic transformations and bioavailabilities are discussed. A point is then made regarding their health effects, which can either be beneficial or adverse depending on the subject studied, the sex, the age, and the physiological status. Toxicological information is given based on official data. The effects are first presented in humans. Animal models are evoked when no data are available in humans. The effects are presented with a constant reference to doses and plausible exposure.
Collapse
|
6
|
Duarte-Casar R, Romero-Benavides JC. Xylosma G. Forst. Genus: Medicinal and Veterinary Use, Phytochemical Composition, and Biological Activity. PLANTS 2022; 11:plants11091252. [PMID: 35567253 PMCID: PMC9103172 DOI: 10.3390/plants11091252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/14/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
Xylosma G. Forst. is a genus of plants belonging to the Salicaceae family with intertropical distribution in America, Asia, and Oceania. Of the 100 accepted species, 22 are under some level of conservation risk. In this review, around 13 species of the genus used as medicinal plants were found, mainly in Central and South America, with a variety of uses, among which antimicrobial is the most common. There is published research in chemistry and pharmacological activity on around 15 of the genus species, centering in their antibacterial and fungicidal activity. Additionally, a variety of active phytochemicals have been isolated, the most representative of which are atraric acid, xylosmine and its derivatives, and velutinic acid. There is still ample field for the validation and evaluation of the activity of Xylosma extracts, particularly in species not yet studied, and concerning uses other than antimicrobial and for the identification and evaluation of their active compounds.
Collapse
Affiliation(s)
- Rodrigo Duarte-Casar
- Maestría en Química Aplicada, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador;
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador
| | - Juan Carlos Romero-Benavides
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador
- Correspondence: ; Tel.: +593-987708487
| |
Collapse
|
7
|
Huffman MA. Folklore, Animal Self-Medication, and Phytotherapy-Something Old, Something New, Something Borrowed, Some Things True. PLANTA MEDICA 2022; 88:187-199. [PMID: 34624907 DOI: 10.1055/a-1586-1665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of medicines was long considered by Western schools of thought to be a a domain unique to humans; however, folklore/Traditional Ecological Knowledge (TEK) from around the world suggests that animals have also long provided inspiration for the discovery of some medicinal plants used to treat humans and their livestock. Searching for medicinal knowledge from animals depends on the recognition of their ability to select and effectively use medicinal plants to prevent or actively ameliorate disease and other homeostatic imbalances. The interdisciplinary field of animal self-medication is providing scientific evidence for this ability in species across the animal kingdom and lends support to animal-origin medicinal plant folklore and recent ethnomedicinal information. Here, 14 case studies of purported animal-inspired plant medicines used by cultures around the world are presented together with ethnomedicinal and pharmacological evidence. Based on this evidence, the diversity and potential mode of self-medicative behaviors are considered. Over 20 animal species, including llama, sloth and jaguar in South America, reindeer and yak in Eurasia, langur and macaque in Asia, and chimpanzee, wild boar, porcupine and elephant in Africa, are linked to these case studies, representing a variety of potential preventative or therapeutic self-medicative behaviors. These examples provide an important perspective on what is likely to have been a much wider practice in the development of human traditional medicine. A role for animal self-medication research in the rejuvenation of old therapies and possible new discoveries of phytotherapies for human and livestock health is encouraged.
Collapse
|
8
|
McDermott M, Cerullo AR, Parziale J, Achrak E, Sultana S, Ferd J, Samad S, Deng W, Braunschweig AB, Holford M. Advancing Discovery of Snail Mucins Function and Application. Front Bioeng Biotechnol 2021; 9:734023. [PMID: 34708024 PMCID: PMC8542881 DOI: 10.3389/fbioe.2021.734023] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/06/2021] [Indexed: 01/12/2023] Open
Abstract
Mucins are a highly glycosylated protein family that are secreted by animals for adhesion, hydration, lubrication, and other functions. Despite their ubiquity, animal mucins are largely uncharacterized. Snails produce mucin proteins in their mucous for a wide array of biological functions, including microbial protection, adhesion and lubrication. Recently, snail mucins have also become a lucrative source of innovation with wide ranging applications across chemistry, biology, biotechnology, and biomedicine. Specifically, snail mucuses have been applied as skin care products, wound healing agents, surgical glues, and to combat gastric ulcers. Recent advances in integrated omics (genomic, transcriptomic, proteomic, glycomic) technologies have improved the characterization of gastropod mucins, increasing the generation of novel biomaterials. This perspective describes the current research on secreted snail mucus, highlighting the potential of this biopolymer, and also outlines a research strategy to fulfill the unmet need of examining the hierarchical structures that lead to the enormous biological and chemical diversity of snail mucus genes.
Collapse
Affiliation(s)
- Maxwell McDermott
- Department of Chemistry and Biochemistry, Hunter College, New York, NY, United States
| | - Antonio R Cerullo
- Department of Chemistry and Biochemistry, Hunter College, New York, NY, United States
| | - James Parziale
- Department of Chemistry and Biochemistry, Hunter College, New York, NY, United States
| | - Eleonora Achrak
- Department of Chemistry and Biochemistry, Hunter College, New York, NY, United States
| | - Sharmin Sultana
- Department of Chemistry and Biochemistry, Hunter College, New York, NY, United States
| | - Jennifer Ferd
- Department of Chemistry and Biochemistry, Hunter College, New York, NY, United States
| | - Safiyah Samad
- Department of Chemistry and Biochemistry, Hunter College, New York, NY, United States
| | - William Deng
- Department of Chemistry and Biochemistry, Hunter College, New York, NY, United States
| | - Adam B Braunschweig
- Department of Chemistry and Biochemistry, Hunter College, New York, NY, United States.,Advanced Science Research Center, Graduate Center of New York, Graduate Department of Biochemistry, New York, NY, United States.,PhD Programs in Biochemistry and Chemistry Graduate Center of the City University of New York, New York, NY, United States
| | - Mandë Holford
- Department of Chemistry and Biochemistry, Hunter College, New York, NY, United States.,PhD Programs in Biochemistry and Chemistry Graduate Center of the City University of New York, New York, NY, United States.,PhD Program in Biology Graduate Center of the City University of New York, New York, NY, United States.,Department of Invertebrate Zoology, The American Museum of Natural History, New York, NY, United States
| |
Collapse
|
9
|
Cracking the chemical code: European common lizards (Zootoca vivipara) respond to an hexane soluble predator kairomone. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Hardy K. Paleomedicine and the Evolutionary Context of Medicinal Plant Use. ACTA ACUST UNITED AC 2020; 31:1-15. [PMID: 33071384 PMCID: PMC7546135 DOI: 10.1007/s43450-020-00107-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Modern human need for medicines is so extensive that it is thought to be a deep evolutionary behavior. There is abundant evidence from our Paleolithic and later prehistoric past, of survival after periodontal disease, traumas, and invasive medical treatments including trepanations and amputations, suggesting a detailed, applied knowledge of medicinal plant secondary compounds. Direct archeological evidence for use of plants in the Paleolithic is rare, but evidence is growing. An evolutionary context for early human use of medicinal plants is provided by the broad evidence for animal self-medication, in particular, of non-human primates. During the later Paleolithic, there is evidence for the use of poisonous and psychotropic plants, suggesting that Paleolithic humans built on and expanded their knowledge and use of plant secondary compounds.
Collapse
Affiliation(s)
- Karen Hardy
- Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23, 08010 Barcelona, Catalonia Spain.,Departament de Prehistòria, Facultat de Filosofia i Lletres, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Catalonia Spain
| |
Collapse
|