1
|
Straková D, Sánchez-Porro C, de la Haba RR, Ventosa A. Strategies of Environmental Adaptation in the Haloarchaeal Genera Haloarcula and Natrinema. Microorganisms 2025; 13:761. [PMID: 40284598 PMCID: PMC12029414 DOI: 10.3390/microorganisms13040761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/19/2025] [Accepted: 03/23/2025] [Indexed: 04/29/2025] Open
Abstract
Haloarchaea, a group of extremophilic archaea, thrive in hypersaline environments characterized not only by high salinity but also by other extreme conditions, such as intense UV radiation, high osmotic pressure, heavy metal contamination, oxidative stress, and fluctuating temperatures. This study investigates the environmental adaptation strategies of species of two genera, Haloarcula and Natrinema, the second and third largest haloarchaeal genera, respectively, after Halorubrum. Comparative genomic analyses were conducted on 48 species from both genera to elucidate their genomic diversity, metabolic potential, and stress-tolerance mechanisms. The genomes revealed diverse metabolic pathways, including rhodopsin-mediated phototrophy, nitrogen assimilation, and thiamine biosynthesis, which support their survival and adaptation to extreme conditions. The analysis identified mechanisms for oxidative stress mitigation, DNA repair, "salt-in" and "salt-out" osmoregulatory strategies, adaptations to temperature shifts and heavy metal exposure, and immune defense. Experimental validation of four representative species, Haloarcula terrestris S1AR25-5AT, Haloarcula saliterrae S1CR25-12T, Haloarcula onubensis S3CR25-11T, and Natrinema salsiterrestre S1CR25-10T, isolated from the heavy-metal-rich hypersaline soils in the Odiel Saltmarshes (Huelva, Spain), demonstrated their tolerance, especially to arsenic, corroborating genomic predictions. This study advances our understanding of the resilience of haloarchaea under poly-extreme conditions and underscores their ecological significance and promise for biotechnological applications, such as the bioremediation of heavy-metal-polluted environments and the production of valuable biomolecules.
Collapse
Affiliation(s)
| | | | - Rafael R. de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain; (D.S.); (C.S.-P.)
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain; (D.S.); (C.S.-P.)
| |
Collapse
|
2
|
Liman GLS, Lennon CW, Mandley JL, Galyon AM, Zatopek KM, Gardner AF, Santangelo TJ. Intein splicing efficiency and RadA levels can control the mode of archaeal DNA replication. SCIENCE ADVANCES 2024; 10:eadp4995. [PMID: 39292776 PMCID: PMC11409957 DOI: 10.1126/sciadv.adp4995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/08/2024] [Indexed: 09/20/2024]
Abstract
Inteins (intervening proteins), mobile genetic elements removed through protein splicing, often interrupt proteins required for DNA replication, recombination, and repair. An abundance of in vitro evidence implies that inteins may act as regulatory elements, whereby reduced splicing inhibits production of the mature protein lacking the intein, but in vivo evidence of regulatory intein excision in the native host is absent. The model archaeon Thermococcus kodakarensis encodes 15 inteins, and we establish the impacts of intein splicing inhibition on host physiology and replication in vivo. We report that a decrease in intein splicing efficiency of the recombinase RadA, a Rad51/RecA homolog, has widespread physiological consequences, including a general growth defect, increased sensitivity to DNA damage, and a switch in the mode of DNA replication from recombination-dependent replication toward origin-dependent replication.
Collapse
Affiliation(s)
- Geraldy L. S. Liman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Jaylin L. Mandley
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Alina M. Galyon
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | | | | | - Thomas J. Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
3
|
Mc Teer L, Moalic Y, Cueff-Gauchard V, Catchpole R, Hogrel G, Lu Y, Laurent S, Hemon M, Aubé J, Leroy E, Roussel E, Oberto J, Flament D, Dulermo R. Cooperation between two modes for DNA replication initiation in the archaeon Thermococcus barophilus. mBio 2024; 15:e0320023. [PMID: 38421162 PMCID: PMC11005403 DOI: 10.1128/mbio.03200-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
The mechanisms underpinning the replication of genomic DNA have recently been challenged in Archaea. Indeed, the lack of origin of replication has no deleterious effect on growth, suggesting that replication initiation relies on homologous recombination. Recombination-dependent replication (RDR) appears to be based on the recombinase RadA, which is of absolute requirement when no initiation origins are detected. The origin of this flexibility in the initiation of replication and the extent to which it is used in nature are yet to be understood. Here, we followed the process of DNA replication throughout the growth stages of Thermococcus barophilus. We combined deep sequencing and genetics to elucidate the dynamics of oriC utilization according to growth phases. We discovered that in T. barophilus, the use of oriC diminishes from the lag to the middle of the log phase, and subsequently increases gradually upon entering the stationary phase. Although oriC demonstrates no indispensability, RadA does exhibit essentiality. Notably, a knockdown mutant strain provides confirmation of the pivotal role of RadA in RDR for the first time. Thus, we demonstrate the existence of a tight combination between oriC utilization and homologous recombination to initiate DNA replication along the growth phases. Overall, this study demonstrates how diverse physiological states can influence the initiation of DNA replication, offering insights into how environmental sensing might impact this fundamental mechanism of life. IMPORTANCE Replication of DNA is highly important in all organisms. It initiates at a specific locus called ori, which serves as the binding site for scaffold proteins-either Cdc6 or DnaA-depending on the domain of life. However, recent studies have shown that the Archaea, Haloferax volcanii and Thermococcus kodakarensis could subsist without ori. Recombination-dependent replication (RDR), via the recombinase RadA, is the mechanism that uses homologous recombination to initiate DNA replication. The extent to which ori's use is necessary in natural growth remains to be characterized. In this study, using Thermococcus barophilus, we demonstrated that DNA replication initiation relies on both oriC and RDR throughout its physiological growth, each to varying degrees depending on the phase. Notably, a knockdown RadA mutant confirmed the prominent use of RDR during the log phase. Moreover, the study of ploidy in oriC and radA mutant strains showed that the number of chromosomes per cell is a critical proxy for ensuring proper growth and cell survival.
Collapse
Affiliation(s)
- Logan Mc Teer
- Univ Brest, Ifremer, CNRS, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds (BEEP), Plouzané, France
| | - Yann Moalic
- Univ Brest, Ifremer, CNRS, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds (BEEP), Plouzané, France
- LabISEN, Yncréa Ouest, Brest, France
| | - Valérie Cueff-Gauchard
- Univ Brest, Ifremer, CNRS, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds (BEEP), Plouzané, France
| | - Ryan Catchpole
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Gaëlle Hogrel
- Univ Brest, Ifremer, CNRS, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds (BEEP), Plouzané, France
| | - Yang Lu
- Univ Brest, Ifremer, CNRS, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds (BEEP), Plouzané, France
| | - Sébastien Laurent
- Univ Brest, Ifremer, CNRS, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds (BEEP), Plouzané, France
| | - Marie Hemon
- Univ Brest, Ifremer, CNRS, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds (BEEP), Plouzané, France
| | - Johanne Aubé
- Univ Brest, Ifremer, CNRS, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds (BEEP), Plouzané, France
| | - Elodie Leroy
- Univ Brest, Ifremer, CNRS, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds (BEEP), Plouzané, France
| | - Erwan Roussel
- Univ Brest, Ifremer, CNRS, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds (BEEP), Plouzané, France
| | - Jacques Oberto
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Didier Flament
- Univ Brest, Ifremer, CNRS, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds (BEEP), Plouzané, France
| | - Rémi Dulermo
- Univ Brest, Ifremer, CNRS, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds (BEEP), Plouzané, France
| |
Collapse
|
4
|
He L, Lever R, Cubbon A, Tehseen M, Jenkins T, Nottingham AO, Horton A, Betts H, Fisher M, Hamdan SM, Soultanas P, Bolt EL. Interaction of human HelQ with DNA polymerase delta halts DNA synthesis and stimulates DNA single-strand annealing. Nucleic Acids Res 2023; 51:1740-1749. [PMID: 36718939 PMCID: PMC9976902 DOI: 10.1093/nar/gkad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 02/01/2023] Open
Abstract
DNA strand breaks are repaired by DNA synthesis from an exposed DNA end paired with a homologous DNA template. DNA polymerase delta (Pol δ) catalyses DNA synthesis in multiple eukaryotic DNA break repair pathways but triggers genome instability unless its activity is restrained. We show that human HelQ halts DNA synthesis by isolated Pol δ and Pol δ-PCNA-RPA holoenzyme. Using novel HelQ mutant proteins we identify that inhibition of Pol δ is independent of DNA binding, and maps to a 70 amino acid intrinsically disordered region of HelQ. Pol δ and its POLD3 subunit robustly stimulated DNA single-strand annealing by HelQ, and POLD3 and HelQ interact physically via the intrinsically disordered HelQ region. This data, and inability of HelQ to inhibit DNA synthesis by the POLD1 catalytic subunit of Pol δ, reveal a mechanism for limiting DNA synthesis and promoting DNA strand annealing during human DNA break repair, which centres on POLD3.
Collapse
Affiliation(s)
- Liu He
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Rebecca Lever
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Andrew Cubbon
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Muhammad Tehseen
- Bioscience Program, Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Tabitha Jenkins
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Anya Horton
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Hannah Betts
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham, UK
| | | | - Samir M Hamdan
- Bioscience Program, Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham, UK
| | - Edward L Bolt
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
5
|
Garnier F, Couturier M, Débat H, Nadal M. Archaea: A Gold Mine for Topoisomerase Diversity. Front Microbiol 2021; 12:661411. [PMID: 34113328 PMCID: PMC8185306 DOI: 10.3389/fmicb.2021.661411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
The control of DNA topology is a prerequisite for all the DNA transactions such as DNA replication, repair, recombination, and transcription. This global control is carried out by essential enzymes, named DNA-topoisomerases, that are mandatory for the genome stability. Since many decades, the Archaea provide a significant panel of new types of topoisomerases such as the reverse gyrase, the type IIB or the type IC. These more or less recent discoveries largely contributed to change the understanding of the role of the DNA topoisomerases in all the living world. Despite their very different life styles, Archaea share a quasi-homogeneous set of DNA-topoisomerases, except thermophilic organisms that possess at least one reverse gyrase that is considered a marker of the thermophily. Here, we discuss the effect of the life style of Archaea on DNA structure and topology and then we review the content of these essential enzymes within all the archaeal diversity based on complete sequenced genomes available. Finally, we discuss their roles, in particular in the processes involved in both the archaeal adaptation and the preservation of the genome stability.
Collapse
Affiliation(s)
- Florence Garnier
- Département de biologie, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France.,Université Paris-Saclay, UVSQ, Versailles, France
| | - Mohea Couturier
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Hélène Débat
- Département de biologie, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France.,Université Paris-Saclay, UVSQ, Versailles, France
| | - Marc Nadal
- Département de biologie, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, Paris, France.,Université de Paris, Paris, France
| |
Collapse
|
6
|
Pérez-Arnaiz P, Dattani A, Smith V, Allers T. Haloferax volcanii-a model archaeon for studying DNA replication and repair. Open Biol 2020; 10:200293. [PMID: 33259746 PMCID: PMC7776575 DOI: 10.1098/rsob.200293] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
The tree of life shows the relationship between all organisms based on their common ancestry. Until 1977, it comprised two major branches: prokaryotes and eukaryotes. Work by Carl Woese and other microbiologists led to the recategorization of prokaryotes and the proposal of three primary domains: Eukarya, Bacteria and Archaea. Microbiological, genetic and biochemical techniques were then needed to study the third domain of life. Haloferax volcanii, a halophilic species belonging to the phylum Euryarchaeota, has provided many useful tools to study Archaea, including easy culturing methods, genetic manipulation and phenotypic screening. This review will focus on DNA replication and DNA repair pathways in H. volcanii, how this work has advanced our knowledge of archaeal cellular biology, and how it may deepen our understanding of bacterial and eukaryotic processes.
Collapse
Affiliation(s)
| | | | | | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
7
|
Marshall CJ, Santangelo TJ. Archaeal DNA Repair Mechanisms. Biomolecules 2020; 10:E1472. [PMID: 33113933 PMCID: PMC7690668 DOI: 10.3390/biom10111472] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022] Open
Abstract
Archaea often thrive in environmental extremes, enduring levels of heat, pressure, salinity, pH, and radiation that prove intolerable to most life. Many environmental extremes raise the propensity for DNA damaging events and thus, impact DNA stability, placing greater reliance on molecular mechanisms that recognize DNA damage and initiate accurate repair. Archaea can presumably prosper in harsh and DNA-damaging environments in part due to robust DNA repair pathways but surprisingly, no DNA repair pathways unique to Archaea have been described. Here, we review the most recent advances in our understanding of archaeal DNA repair. We summarize DNA damage types and their consequences, their recognition by host enzymes, and how the collective activities of many DNA repair pathways maintain archaeal genomic integrity.
Collapse
Affiliation(s)
| | - Thomas J. Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|