1
|
Ostrowska-Lesko M, Rajtak A, Moreno-Bueno G, Bobinski M. Scientific and clinical relevance of non-cellular tumor microenvironment components in ovarian cancer chemotherapy resistance. Biochim Biophys Acta Rev Cancer 2024; 1879:189036. [PMID: 38042260 DOI: 10.1016/j.bbcan.2023.189036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
The tumor microenvironment (TME) components play a crucial role in cancer cells' resistance to chemotherapeutic agents. This phenomenon is exceptionally fundamental in patients with ovarian cancer (OvCa), whose outcome depends mainly on their response to chemotherapy. Until now, most reports have focused on the role of cellular components of the TME, while less attention has been paid to the stroma and other non-cellular elements of the TME, which may play an essential role in the therapy resistance. Inhibiting these components could help define new therapeutic targets and potentially restore chemosensitivity. The aim of the present article is both to summarize the knowledge about non-cellular components of the TME in the development of OvCa chemoresistance and to suggest targeting of non-cellular elements of the TME as a valuable strategy to overcome chemoresistance and to develop new therapeutic strategies in OvCA patients.
Collapse
Affiliation(s)
- Marta Ostrowska-Lesko
- Chair and Department of Toxicology, Medical University of Lublin, 8b Jaczewskiego Street, 20-090 Lublin, Poland.
| | - Alicja Rajtak
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Poland
| | - Gema Moreno-Bueno
- Biochemistry Department, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Sols-Morreale' (IIBm-CISC), Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Spain; Fundación MD Anderson Internacional (FMDA), Spain.
| | - Marcin Bobinski
- 1st Chair and Department of Oncological Gynecology and Gynecology, Medical University of Lublin, Poland.
| |
Collapse
|
2
|
Robak A, Kistowski M, Wojtas G, Perzanowska A, Targowski T, Michalak A, Krasowski G, Dadlez M, Domański D. Diagnosing pleural effusions using mass spectrometry-based multiplexed targeted proteomics quantitating mid- to high-abundance markers of cancer, infection/inflammation and tuberculosis. Sci Rep 2022; 12:3054. [PMID: 35197508 PMCID: PMC8866415 DOI: 10.1038/s41598-022-06924-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/09/2022] [Indexed: 01/08/2023] Open
Abstract
Pleural effusion (PE) is excess fluid in the pleural cavity that stems from lung cancer, other diseases like extra-pulmonary tuberculosis (TB) and pneumonia, or from a variety of benign conditions. Diagnosing its cause is often a clinical challenge and we have applied targeted proteomic methods with the aim of aiding the determination of PE etiology. We developed a mass spectrometry (MS)-based multiple reaction monitoring (MRM)-protein-panel assay to precisely quantitate 53 established cancer-markers, TB-markers, and infection/inflammation-markers currently assessed individually in the clinic, as well as potential biomarkers suggested in the literature for PE classification. Since MS-based proteomic assays are on the cusp of entering clinical use, we assessed the merits of such an approach and this marker panel based on a single-center 209 patient cohort with established etiology. We observed groups of infection/inflammation markers (ADA2, WARS, CXCL10, S100A9, VIM, APCS, LGALS1, CRP, MMP9, and LDHA) that specifically discriminate TB-PEs and other-infectious-PEs, and a number of cancer markers (CDH1, MUC1/CA-15-3, THBS4, MSLN, HPX, SVEP1, SPINT1, CK-18, and CK-8) that discriminate cancerous-PEs. Some previously suggested potential biomarkers did not show any significant difference. Using a Decision Tree/Multiclass classification method, we show a very good discrimination ability for classifying PEs into one of four types: cancerous-PEs (AUC: 0.863), tuberculous-PEs (AUC of 0.859), other-infectious-PEs (AUC of 0.863), and benign-PEs (AUC: 0.842). This type of approach and the indicated markers have the potential to assist in clinical diagnosis in the future, and help with the difficult decision on therapy guidance.
Collapse
Affiliation(s)
- Aleksandra Robak
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics - Polish Academy of Sciences, Warsaw, Poland
| | - Michał Kistowski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics - Polish Academy of Sciences, Warsaw, Poland
| | - Grzegorz Wojtas
- Mazovian Center of Pulmonary Disease and Tuberculosis Treatment, Otwock, Poland
| | - Anna Perzanowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics - Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Targowski
- Department of Geriatrics, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Agata Michalak
- Mazovian Center of Pulmonary Disease and Tuberculosis Treatment, Otwock, Poland
| | - Grzegorz Krasowski
- Mazovian Center of Pulmonary Disease and Tuberculosis Treatment, Otwock, Poland
| | - Michał Dadlez
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics - Polish Academy of Sciences, Warsaw, Poland
| | - Dominik Domański
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics - Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
3
|
Guo S, Wu X, Lei T, Zhong R, Wang Y, Zhang L, Zhao Q, Huang Y, Shi Y, Wu L. The Role and Therapeutic Value of Syndecan-1 in Cancer Metastasis and Drug Resistance. Front Cell Dev Biol 2022; 9:784983. [PMID: 35118073 PMCID: PMC8804279 DOI: 10.3389/fcell.2021.784983] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/03/2021] [Indexed: 12/17/2022] Open
Abstract
Metastasis and relapse are major causes of cancer-related fatalities. The elucidation of relevant pathomechanisms and adoption of appropriate countermeasures are thus crucial for the development of clinical strategies that inhibit malignancy progression as well as metastasis. An integral component of the extracellular matrix, the type 1 transmembrane glycoprotein syndecan-1 (SDC-1) binds cytokines and growth factors involved in tumor microenvironment modulation. Alterations in its localization have been implicated in both cancer metastasis and drug resistance. In this review, available data regarding the structural characteristics, shedding process, and nuclear translocation of SDC-1 are detailed with the aim of highlighting strategies directly targeting SDC-1 as well as SDC-1-mediated carcinogenesis.
Collapse
Affiliation(s)
- Sen Guo
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - XinYi Wu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Lei
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Zhong
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - YiRan Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liang Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - QingYi Zhao
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Huang
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Yin Shi
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Outpatient Department, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Yin Shi, ; Luyi Wu,
| | - Luyi Wu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Yin Shi, ; Luyi Wu,
| |
Collapse
|
4
|
Nikitovic D, Pérez S. Preface for the Special Issue on the Exploration of the Multifaceted Roles of Glycosaminoglycans: GAGs. Biomolecules 2021; 11:biom11111630. [PMID: 34827628 PMCID: PMC8615939 DOI: 10.3390/biom11111630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Glycosaminoglycans (GAGs) are linear, anionic polysaccharides that consist of repeating disaccharides of hexosamine and hexuronic acid [...].
Collapse
Affiliation(s)
- Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
- Correspondence:
| | - Serge Pérez
- University Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France;
| |
Collapse
|
5
|
Javadi J, Görgens A, Vanky H, Gupta D, Hjerpe A, EL-Andaloussi S, Hagey D, Dobra K. Diagnostic and Prognostic Utility of the Extracellular Vesicles Subpopulations Present in Pleural Effusion. Biomolecules 2021; 11:1606. [PMID: 34827604 PMCID: PMC8615485 DOI: 10.3390/biom11111606] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), comprising exosomes, microvesicles, and apoptotic bodies, are released by all cells into the extracellular matrix and body fluids, where they play important roles in intercellular communication and matrix remodeling in various pathological conditions. Malignant pleural mesothelioma (MPM) is a primary tumor of mesothelial origin, predominantly related to asbestos exposure. The detection of MPM at an early stage and distinguishing it from benign conditions and metastatic adenocarcinomas (AD) is sometimes challenging. Pleural effusion is often the first available biological material and an ideal source for characterizing diagnostic and prognostic factors. Specific proteins have previously been identified as diagnostic markers in effusion, but it is not currently known whether these are associated with vesicles or released in soluble form. Here, we study and characterize tumor heterogeneity and extracellular vesicle diversity in pleural effusion as diagnostic or prognostic markers for MPM. We analyzed extracellular vesicles and soluble proteins from 27 pleural effusions, which were collected and processed at the department of pathology and cytology at Karolinska University Hospital, representing three different patient groups, MPM (n = 9), benign (n = 6), and AD (n = 12). The vesicles were fractionated into apoptotic bodies, microvesicles, and exosomes by differential centrifugation and characterized by nanoparticle tracking analysis and Western blotting. Multiplex bead-based flow cytometry analysis showed that exosomal markers were expressed differently on EVs present in different fractions. Further characterization of exosomes by a multiplex immunoassay (Luminex) showed that all soluble proteins studied were also present in exosomes, though the ratio of protein concentration present in supernatant versus exosomes varied. The proportion of Angiopoietin-1 present in exosomes was generally higher in benign compared to malignant samples. The corresponding ratios of Mesothelin, Galectin-1, Osteopontin, and VEGF were higher in MPM effusions compared to those in the benign group. These findings demonstrate that relevant diagnostic markers can be recovered from exosomes.
Collapse
Affiliation(s)
- Joman Javadi
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, 141 52 Stockholm, Sweden; (H.V.); (A.H.); (K.D.)
| | - André Görgens
- Division of BCM, Department of Laboratory Medicine, Karolinska Institutet, 141 52 Stockholm, Sweden; (A.G.); (D.G.); (S.E.-A.); (D.H.)
| | - Hanna Vanky
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, 141 52 Stockholm, Sweden; (H.V.); (A.H.); (K.D.)
| | - Dhanu Gupta
- Division of BCM, Department of Laboratory Medicine, Karolinska Institutet, 141 52 Stockholm, Sweden; (A.G.); (D.G.); (S.E.-A.); (D.H.)
| | - Anders Hjerpe
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, 141 52 Stockholm, Sweden; (H.V.); (A.H.); (K.D.)
| | - Samir EL-Andaloussi
- Division of BCM, Department of Laboratory Medicine, Karolinska Institutet, 141 52 Stockholm, Sweden; (A.G.); (D.G.); (S.E.-A.); (D.H.)
| | - Daniel Hagey
- Division of BCM, Department of Laboratory Medicine, Karolinska Institutet, 141 52 Stockholm, Sweden; (A.G.); (D.G.); (S.E.-A.); (D.H.)
| | - Katalin Dobra
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, 141 52 Stockholm, Sweden; (H.V.); (A.H.); (K.D.)
| |
Collapse
|
6
|
Berdiaki A, Neagu M, Giatagana EM, Kuskov A, Tsatsakis AM, Tzanakakis GN, Nikitovic D. Glycosaminoglycans: Carriers and Targets for Tailored Anti-Cancer Therapy. Biomolecules 2021; 11:395. [PMID: 33800172 PMCID: PMC8001210 DOI: 10.3390/biom11030395] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment (TME) is composed of cancerous, non-cancerous, stromal, and immune cells that are surrounded by the components of the extracellular matrix (ECM). Glycosaminoglycans (GAGs), natural biomacromolecules, essential ECM, and cell membrane components are extensively altered in cancer tissues. During disease progression, the GAG fine structure changes in a manner associated with disease evolution. Thus, changes in the GAG sulfation pattern are immediately correlated to malignant transformation. Their molecular weight, distribution, composition, and fine modifications, including sulfation, exhibit distinct alterations during cancer development. GAGs and GAG-based molecules, due to their unique properties, are suggested as promising effectors for anticancer therapy. Considering their participation in tumorigenesis, their utilization in drug development has been the focus of both industry and academic research efforts. These efforts have been developing in two main directions; (i) utilizing GAGs as targets of therapeutic strategies and (ii) employing GAGs specificity and excellent physicochemical properties for targeted delivery of cancer therapeutics. This review will comprehensively discuss recent developments and the broad potential of GAG utilization for cancer therapy.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| | - Monica Neagu
- Department of Immunology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| | - Andrey Kuskov
- Department of Technology of Chemical Pharmaceutical and Cosmetic Substances, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Aristidis M. Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - George N. Tzanakakis
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
- Laboratory of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| |
Collapse
|