1
|
Repetowski P, Warszyńska M, Dąbrowski JM. NIR-activated multifunctional agents for the combined application in cancer imaging and therapy. Adv Colloid Interface Sci 2025; 336:103356. [PMID: 39612723 DOI: 10.1016/j.cis.2024.103356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
Anticancer therapies that combine both diagnostic and therapeutic capabilities hold significant promise for enhancing treatment efficacy and patient outcomes. Among these, agents responsive to near-infrared (NIR) photons are of particular interest due to their negligible toxicity and multifunctionality. These compounds are not only effective in photodynamic therapy (PDT), but also serve as contrast agents in various imaging modalities, including fluorescence and photoacoustic imaging. In this review, we explore the photophysical and photochemical properties of NIR-activated porphyrin, cyanine, and phthalocyanines derivatives as well as aggregation-induced emission compounds, highlighting their application in synergistic detection, diagnosis, and therapy. Special attention is given to the design and optimization of these agents to achieve high photostability, efficient NIR absorption, and significant yields of fluorescence, heat, or reactive oxygen species (ROS) generation depending on the application. Additionally, we discuss the incorporation of these compounds into nanocarriers to enhance their solubility, stability, and target specificity. Such nanoparticle-based systems exhibit improved pharmacokinetics and pharmacodynamics, facilitating more effective tumor targeting and broadening the application range to photoacoustic imaging and photothermal therapy. Furthermore, we summarize the application of these NIR-responsive agents in multimodal imaging techniques, which combine the advantages of fluorescence and photoacoustic imaging to provide comprehensive diagnostic information. Finally, we address the current challenges and limitations of photodiagnosis and phototherapy and highlight some critical barriers to their clinical implementation. These include issues related to their phototoxicity, limited tissue penetration, and potential off-target effects. The review concludes by highlighting future research directions aimed at overcoming these obstacles, with a focus on the development of next-generation agents and platforms that offer enhanced therapeutic efficacy and imaging capabilities in the field of cancer treatment.
Collapse
Affiliation(s)
- Paweł Repetowski
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Marta Warszyńska
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | | |
Collapse
|
2
|
Meng W, Huang L, Guo J, Xin Q, Liu J, Hu Y. Innovative Nanomedicine Delivery: Targeting Tumor Microenvironment to Defeat Drug Resistance. Pharmaceutics 2024; 16:1549. [PMID: 39771528 PMCID: PMC11728492 DOI: 10.3390/pharmaceutics16121549] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/24/2024] [Accepted: 11/30/2024] [Indexed: 01/16/2025] Open
Abstract
Nanodrug delivery systems have revolutionized tumor therapy like never before. By overcoming the complexity of the tumor microenvironment (TME) and bypassing drug resistance mechanisms, nanotechnology has shown great potential to improve drug efficacy and reduce toxic side effects. This review examines the impact of the TME on drug resistance and recent advances in nanomedicine delivery systems to overcome this challenge. Characteristics of the TME such as hypoxia, acidity, and high interstitial pressure significantly reduce the effectiveness of chemotherapy and radiotherapy, leading to increased drug resistance in tumor cells. Then, this review summarizes innovative nanocarrier designs for these microenvironmental features, including hypoxia-sensitive nanoparticles, pH-responsive carriers, and multifunctional nanosystems that enable targeted drug release and improved drug penetration and accumulation in tumors. By combining nanotechnology with therapeutic strategies, this review offers a novel perspective by focusing on the innovative design of nanocarriers that interact with the TME, a dimension often overlooked in similar reviews. We highlight the dual role of these nanocarriers in therapeutic delivery and TME modulation, emphasize their potential to overcome drug resistance, and look at future research directions.
Collapse
Affiliation(s)
- Wenjun Meng
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China (J.L.)
| | - Li Huang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China (J.L.)
| | - Jiamin Guo
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Xin
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiyan Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China (J.L.)
| | - Yuzhu Hu
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Ge Y, Kwon MH, Kou F, Uthamapriya RA, Zhang P, Lee DJ, Yang R, Bao H, Palanisamy S, You S. Folic-acid-targeted drug delivery system implementing Angelica gigas polysaccharide: A potential strategy for colorectal cancer treatment. Int J Biol Macromol 2024; 283:137653. [PMID: 39561833 DOI: 10.1016/j.ijbiomac.2024.137653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/15/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
The study focuses on the development of folate-targeted conjugates utilizing Angelica gigas polysaccharide (F2) as a drug carrier for colorectal cancer therapy. We synthesized F2-C-5-FU conjugates by linking carboxymethyl-5-fluorouracil (C-5-FU) with folic acid (FA) through ester bonding. The drug release behavior of F2-C-5-FU-FA was pH-dependent, favoring release under alkaline conditions. After 96 h in phosphate buffer (pH 7.4), the conjugate exhibited a cumulative release of 54.7%, which was higher compared to other pH environments. In vitro, F2-C-5-FU-FA showed enhanced cytotoxicity and increased cellular uptake in folate receptor-positive HCT-116 cells compared to A549 cells. The conjugate also induced G2/M cell cycle arrest and modulated the BAX/BCL-2 mRNA expression ratio through the MAPK and NF-κB signaling pathways. In vivo, F2-C-5-FU-FA increased tumor fluorescence intensity, prolonged drug circulation, and reduced organ toxicity to non-target organs. The treatment promoted cancer cell apoptosis by inhibiting the expression of apoptosis-related proteins. Overall, F2-C-5-FU-FA conjugates demonstrate potential as an effective drug delivery system for targeted colorectal cancer therapy.
Collapse
Affiliation(s)
- Yunfei Ge
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650 201, China; Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Mi-Hye Kwon
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Fang Kou
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Rajavel Arumugam Uthamapriya
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Peng Zhang
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Dong-Jin Lee
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Ruijuan Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650 201, China
| | - Honghui Bao
- Hubei International Scientific and Technological cooperation base for research and development of traditional medicine and food homologus products, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China..
| | - Subramanian Palanisamy
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea.
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea.
| |
Collapse
|
4
|
Qu N, Song K, Ji Y, Liu M, Chen L, Lee RJ, Teng L. Albumin Nanoparticle-Based Drug Delivery Systems. Int J Nanomedicine 2024; 19:6945-6980. [PMID: 39005962 PMCID: PMC11246635 DOI: 10.2147/ijn.s467876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/28/2024] [Indexed: 07/16/2024] Open
Abstract
Nanoparticle-based systems are extensively investigated for drug delivery. Among others, with superior biocompatibility and enhanced targeting capacity, albumin appears to be a promising carrier for drug delivery. Albumin nanoparticles are highly favored in many disease therapies, as they have the proper chemical groups for modification, cell-binding sites for cell adhesion, and affinity to protein drugs for nanocomplex generation. Herein, this review summarizes the recent fabrication techniques, modification strategies, and application of albumin nanoparticles. We first discuss various albumin nanoparticle fabrication methods, from both pros and cons. Then, we provide a comprehensive introduction to the modification section, including organic albumin nanoparticles, metal albumin nanoparticles, inorganic albumin nanoparticles, and albumin nanoparticle-based hybrids. We finally bring further perspectives on albumin nanoparticles used for various critical diseases.
Collapse
Affiliation(s)
- Na Qu
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Ke Song
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Yating Ji
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Mingxia Liu
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Lijiang Chen
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Robert J Lee
- School of Life Sciences, Jilin University, Changchun, 130023, People's Republic of China
- College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, 130023, People's Republic of China
- State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Yantai, 264000, People's Republic of China
| |
Collapse
|
5
|
Liu X, Zhang M, Zhou X, Wan M, Cui A, Xiao B, Yang J, Liu H. Research advances in Zein-based nano-delivery systems. Front Nutr 2024; 11:1379982. [PMID: 38798768 PMCID: PMC11119329 DOI: 10.3389/fnut.2024.1379982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Zein is the main vegetable protein from maize. In recent years, Zein has been widely used in pharmaceutical, agriculture, food, environmental protection, and other fields because it has excellent biocompatibility and biosafety. However, there is still a lack of systematic review and research on Zein-based nano-delivery systems. This paper systematically reviews preparation and modification methods of Zein-based nano-delivery systems, based on the basic properties of Zein. It discusses the preparation of Zein nanoparticles and the influencing factors in detail, as well as analyzing the advantages and disadvantages of different preparation methods and summarizing modification methods of Zein nanoparticles. This study provides a new idea for the research of Zein-based nano-delivery system and promotes its application.
Collapse
Affiliation(s)
- Xiaoxuan Liu
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Minhong Zhang
- Department of Clinical Medicine Research Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Antitumor Effects of Natural Products, Ganzhou, China
| | - Xuelian Zhou
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Mengjiao Wan
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Aiping Cui
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Bang Xiao
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Jianqiong Yang
- Department of Clinical Medicine Research Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Ganzhou Key Laboratory of Antitumor Effects of Natural Products, Ganzhou, China
| | - Hai Liu
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| |
Collapse
|
6
|
Cui LW, Fan LY, Shen ZY. Application Research Progress of Nanomaterial Graphene and its Derivative Complexes in Tumor Diagnosis and Therapy. Curr Med Chem 2024; 31:6436-6459. [PMID: 38299292 DOI: 10.2174/0109298673251648231106112354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/05/2023] [Accepted: 10/05/2023] [Indexed: 02/02/2024]
Abstract
Functional nanomaterial graphene and its derivatives have attracted considerable attention in many fields because of their unique physical and chemical properties. Most notably, graphene has become a research hotspot in the biomedical field, especially in relation to malignant tumors. In this study, we briefly review relevant research from recent years on graphene and its derivatives in tumor diagnosis and antitumor therapy. The main contents of the study include the graphene-derivative diagnosis of tumors in the early stage, graphene quantum dots, photodynamics, MRI contrast agent, acoustic dynamics, and the effects of ultrasonic cavitation and graphene on tumor therapy. Moreover, the biocompatibility of graphene is briefly described. This review provides a broad overview of the applications of graphene and its derivatives in tumors. Conclusion, graphene and its derivatives play an important role in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Li Wen Cui
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, No. 30, North Tong-yang Road, Pingchao Town, Tongzhou District, Nantong, Jiangsu 226361, China
| | - Lu Yao Fan
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, No. 30, North Tong-yang Road, Pingchao Town, Tongzhou District, Nantong, Jiangsu 226361, China
| | - Zhi Yong Shen
- Department of Radiology, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, No. 30, North Tong-yang Road, Pingchao Town, Tongzhou District, Nantong, Jiangsu 226361, China
| |
Collapse
|
7
|
Xie X, Yue T, Gu W, Cheng W, He L, Ren W, Li F, Piao JG. Recent Advances in Mesoporous Silica Nanoparticles Delivering siRNA for Cancer Treatment. Pharmaceutics 2023; 15:2483. [PMID: 37896243 PMCID: PMC10609930 DOI: 10.3390/pharmaceutics15102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Silencing genes using small interfering (si) RNA is a promising strategy for treating cancer. However, the curative effect of siRNA is severely constrained by low serum stability and cell membrane permeability. Therefore, improving the delivery efficiency of siRNA for cancer treatment is a research hotspot. Recently, mesoporous silica nanoparticles (MSNs) have emerged as bright delivery vehicles for nucleic acid drugs. A comprehensive understanding of the design of MSN-based vectors is crucial for the application of siRNA in cancer therapy. We discuss several surface-functionalized MSNs' advancements as effective siRNA delivery vehicles in this paper. The advantages of using MSNs for siRNA loading regarding considerations of different shapes, various options for surface functionalization, and customizable pore sizes are highlighted. We discuss the recent investigations into strategies that efficiently improve cellular uptake, facilitate endosomal escape, and promote cargo dissociation from the MSNs for enhanced intracellular siRNA delivery. Also, particular attention was paid to the exciting progress made by combining RNAi with other therapies to improve cancer therapeutic outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fanzhu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (X.X.); (T.Y.); (W.G.); (W.C.); (L.H.); (W.R.)
| | - Ji-Gang Piao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (X.X.); (T.Y.); (W.G.); (W.C.); (L.H.); (W.R.)
| |
Collapse
|
8
|
Pandurang TP, Cacaccio J, Durrani FA, Dukh M, Alsaleh AZ, Sajjad M, D'Souza F, Kumar D, Pandey RK. A Remarkable Difference in Pharmacokinetics of Fluorinated Versus Iodinated Photosensitizers Derived from Chlorophyll-a and a Direct Correlation between the Tumor Uptake and Anti-Cancer Activity. Molecules 2023; 28:molecules28093782. [PMID: 37175191 PMCID: PMC10180080 DOI: 10.3390/molecules28093782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
To investigate and compare the pharmacokinetic profile and anti-cancer activity of fluorinated and iodinated photosensitizers (PSs), the 3-(1'-(o-fluorobenzyloxy)ethyl pyropheophorbide and the corresponding meta-(m-) and para (p-) fluorinated analogs (methyl esters and carboxylic acids) were synthesized. Replacing iodine with fluorine in PSs did not make any significant difference in fluorescence and singlet oxygen (a key cytotoxic agent) production. The nature of the delivery vehicle and tumor types showed a significant difference in uptake and long-term cure by photodynamic therapy (PDT), especially in the iodinated PS. An unexpected difference in the pharmacokinetic profiles of fluorinated vs. iodinated PSs was observed. At the same imaging parameters, the fluorinated PSs showed maximal tumor uptake at 2 h post injection of the PS, whereas the iodinated PS gave the highest uptake at 24 h post injection. Among all isomers, the m-fluoro PS showed the best in vivo anti-cancer activity in mice bearing U87 (brain) or bladder (UMUC3) tumors. A direct correlation between the tumor uptake and PDT efficacy was observed. The higher tumor uptake of m-fluoro PS at two hours post injection provides a solid rationale for developing the corresponding 18F-agent (half-life 110 min only) for positron imaging tomography (PET) of those cancers (e.g., bladder, prostate, kidney, pancreas, and brain) where 18F-FDG-PET shows limitations.
Collapse
Affiliation(s)
- Taur Prakash Pandurang
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, India
| | - Joseph Cacaccio
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Farukh A Durrani
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mykhaylo Dukh
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Ajyal Z Alsaleh
- Department of Chemistry, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA
| | - Munawwar Sajjad
- Department of Nuclear Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14221, USA
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA
| | - Dalip Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, India
| | - Ravindra K Pandey
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
9
|
Chen X, Yang R, Shen J, Huang Q, Wu Z. Research Progress of Bioinspired Nanostructured Systems for the Treatment of Ocular Disorders. Pharmaceuticals (Basel) 2023; 16:ph16010096. [PMID: 36678597 PMCID: PMC9865244 DOI: 10.3390/ph16010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
How to enhance the bioavailability and prolong the residence time of drugs in the eye present the major barriers to traditional eye delivery. Nanotechnology has been widely used in ocular drug delivery systems because of its advantages of minimizing adverse reactions, decreasing the frequency of administration, prolonging the release time, and improving the bioavailability of the drug in the eye. As natural product-based nanostructured systems, bioinspired nanostructured systems have presented as less toxic, easy to prepare, and cost-effective and have potential application value in the field of nanotechnology. A systematic classification of bioinspired nanostructured systems based on their inspiration source and formulation and their brief applications in disease are presented here. A review of recent research progress of the bioinspired nanostructured systems for the treatment of the anterior and posterior segment of ocular disorders is then presented in detail. Finally, current challenges and future directions with regard to manufacturing bioinspired nanomaterials are provided.
Collapse
Affiliation(s)
- Xuan Chen
- Department of Ophthalmology, Wuxi Second People’s Hospital, Nanjing Medical University, Wuxi 214002, China
| | - Rui Yang
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214002, China
- Correspondence: (R.Y.); (Z.W.)
| | - Jinyan Shen
- Department of Ophthalmology, Wuxi Second People’s Hospital, Nanjing Medical University, Wuxi 214002, China
| | - Qingyu Huang
- Department of Ophthalmology, Wuxi Second People’s Hospital, Nanjing Medical University, Wuxi 214002, China
| | - Zhifeng Wu
- Department of Ophthalmology, Wuxi Second People’s Hospital, Nanjing Medical University, Wuxi 214002, China
- Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong University, Wuxi 214002, China
- Correspondence: (R.Y.); (Z.W.)
| |
Collapse
|
10
|
Radiolabeled methotrexate loaded chitosan nanoparticles as imaging probe for breast cancer: Biodistribution in tumor-bearing mice. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Hao L, Shi Z, Dong Y, Chen J, Pang K, He H, Zhang S, Wu W, Zhang Q, Han C. Efficient Delivery of P3H4 siRNA and Chlorin e6 by cRGDfK-Installed Polyarginine Nanoparticles for Tumor-Targeting Therapy of Bladder Cancer. Pharmaceutics 2022; 14:pharmaceutics14102149. [PMID: 36297587 PMCID: PMC9609145 DOI: 10.3390/pharmaceutics14102149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose: Prolyl 3-hydroxylase family member 4 (P3H4) is a potent prognostic oncogene in bladder cancer (BC), and the inhibition of P3H4 suppresses BC tumor growth. This study aimed to evaluate the efficiency of P3H4 inhibition for BC tumor therapy via tumor-targeting nanoparticles. Methods and results: A linear polyarginine peptide (R9) was synthesized, azide-modified, and then assembled with cyclic pentapeptide cRGDfK. Chlorin e6 (ce6)-conjugated CH3-R9-RGD nanoparticles were prepared for the delivery of siP3H4 into T24 cells in vitro and BC tumors in vivo. Dynamic light scattering analysis identified that the optimum CH3-R9-RGD@siP3H4 molar ratio was 30/1. CH3-R9-RGD@ce6/siP3H4 nanocomposites decreased P3H4 expression and cell proliferation and promoted reactive oxygen species production, apoptosis, and calreticulin exposure in T24 cells in vitro. In vivo experiments showed that CH3-R9-RGD@ce6/siP3H4 nanocomposites caused pathological changes, suppressed BC tumor growth, promoted caspase 3 expression, and enhanced calreticulin exposure in tumor cells. Conclusions: The tumor-targeting CH3-R9-RGD nanocomposites encapsulating siP3H4 and ce6 might be an alternative therapeutic strategy or intravesical instillation chemotherapy for BC.
Collapse
Affiliation(s)
- Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou 221009, China
| | - Zhenduo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou 221009, China
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Yang Dong
- Department of Urology, Xuzhou Central Hospital, Xuzhou 221009, China
- Medical College of Soochow University, Suzhou 215123, China
| | - Jiangang Chen
- Medical College of Soochow University, Suzhou 215123, China
- Department of Urology, The First People’s Hospital of Nantong City, Nantong 226001, China
| | - Kun Pang
- Department of Urology, Xuzhou Central Hospital, Xuzhou 221009, China
| | - Houguang He
- Department of Urology, Xuzhou Central Hospital, Xuzhou 221009, China
| | - Shaoqi Zhang
- Medical College of Soochow University, Suzhou 215123, China
| | - Wei Wu
- Medical College of Soochow University, Suzhou 215123, China
| | - Qianjin Zhang
- Medical College of Soochow University, Suzhou 215123, China
| | - Conghui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou 221009, China
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
- Medical College of Soochow University, Suzhou 215123, China
- Correspondence: ; Tel.: +86-516-83956711; Fax: +86-516-83840486
| |
Collapse
|
12
|
Dukh M, Cacaccio J, Durrani FA, Kumar I, Watson R, Tabaczynski WA, Joshi P, Missert JR, Baumann H, Pandey RK. Impact of mono- and di-β-galactose moieties in in vitro / in vivo anticancer efficacy of pyropheophorbide-carbohydrate conjugates by photodynamic therapy. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY REPORTS 2022; 5:100047. [PMID: 36568335 PMCID: PMC9776133 DOI: 10.1016/j.ejmcr.2022.100047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To investigate the impact of mono- and di-β-galactose moieties in tumor uptake and photodynamic therapy (PDT) efficacy, HPPH [3-(1'-hexyloxy)ethyl-3-devinylpyropheophorobide-a], the meso pyropheophorbide-a [3-ethyl-3-devinyl-pyropheophorbide-a], and the corresponding 20-benzoic acid analogs were used as starting materials. Reaction of the intermediates containing one or two carboxylic acid functionalities with 1-aminogalactose afforded the desired 172- or 20(4')- mono- and 172, 20(4')-di galactose conjugated photosensitizers (PSs) with and without a carboxylic acid group. The overall lipophilicity caused by the presence of galactose in combination with either an ethyl or (1'-hexyloxy)ethyl side chain at position-3 of the macrocycle made a significant difference in in vitro uptake by tumor cells and photoreaction upon light exposure. Interestingly, among the PSs investigated, compared to HPPH 1 the carbohydrate conjugates 2 and 11 in which β-galactose moieties are conjugated at positions 172 and 20(4') of meso-pyro pheophorbide-a showed similar in vitro efficacy in FaDu cell lines, but in SCID mice bearing FaDu tumors (head & neck) Ps 11 gave significantly improved long-term tumor cure.
Collapse
Affiliation(s)
- Mykhaylo Dukh
- PDT Center, Cell Stress Biology, Buffalo, NY, 14263, USA
| | | | | | - Ishaan Kumar
- PDT Center, Cell Stress Biology, Buffalo, NY, 14263, USA
| | - Ramona Watson
- PDT Center, Cell Stress Biology, Buffalo, NY, 14263, USA
| | | | - Penny Joshi
- PDT Center, Cell Stress Biology, Buffalo, NY, 14263, USA
| | | | - Heinz Baumann
- Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Ravindra K. Pandey
- PDT Center, Cell Stress Biology, Buffalo, NY, 14263, USA,Corresponding author. (R.K. Pandey)
| |
Collapse
|
13
|
Zhang X, Yan R, Wei Z, Yang D, Hu Z, Zhang Y, Huang X, Huang H, Wang W. Folate Decorated Multifunctional Biodegradable Nanoparticles for Gastric Carcinoma Active Targeting Theranostics. Int J Nanomedicine 2022; 17:2493-2502. [PMID: 35669001 PMCID: PMC9166902 DOI: 10.2147/ijn.s348380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/24/2022] [Indexed: 01/10/2023] Open
Abstract
Introduction Gastric cancer remains a major clinical issue and little progress has been made in the treatment of gastric cancer patients during recent decades. Nanoparticles provide a versatile platform for the diagnosis and treatment of gastric cancer. Methods We prepared 7-ethyl-10-hydroxycamptothecin (SN-38) 125I-radiolabelled biodegradable nanoparticles with folate surface modification (125I-SN-38-FA-NPs) as a novel nanoplatform for targeted gastric carcinoma theranostics. We characterized this system in terms of particle size, morphology, radiostability, and release properties and examined the in vitro cytotoxicity and cellular uptake properties of 125I-SN-38-FA-NPs in MNK 7 and NCI-N7 cells. The pharmacokinetics and biodistribution of 125I-SN-38-FA-NPs were imaged by single photon emission computer tomography (SPECT). An MNK7 tumor-bearing model were established and the in vivo antitumor activity of 125I-SN-38-FA-NPs was evaluated. Results SN-38 was readily radiolabeled with 125I and exhibited high radiostability. Poly-lactic-co-glycolic acid (PLGA) nanoparticles (NPs) were formed by solvent exchange, and displayed spherical morphology of 100 nm in diameter as characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). A 2.5-fold greater uptake of 125I-radiolabelled SN-38-loaded folate-decorated PLGA nanoparticles (125I-SN-38-FA-NPs) than 125I-radiolabelled SN-38-loaded PLGA nanoparticles (125I-SN-38-NPs) were record in MKN7 tumor cells. NPs and folate-decorated PLGA nanoparticles (FA-NPs) also had good biocompatibility in methyl thiazolyl tetrazolium (MTT) assays. Pharmacokinetic, biodistribution and SPECT imaging studies showed that 125I-SN-38-FA-NPs had prolonged circulation, were distributed in the reticuloendothelial system, and had high uptake in tumors with a higher tumor accumulation of 125I-SN-38-FA-NPs than 125I-SN-38-NPs recorded at 24 h postinjection. In vivo SN-38-FA-NPs significantly inhibited tumor growth without causing obvious side effects. Conclusion Folate receptor alpha (FOLR1) targeted drug-loaded nanoparticles enable SPECT imaging and chemotherapy, and provide a novel nanoplatform for gastric carcinoma active targeting theranostics.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People's Republic of China
| | - Ronglin Yan
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People's Republic of China
| | - Ziran Wei
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People's Republic of China
| | - Dejun Yang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People's Republic of China
| | - Zunqi Hu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People's Republic of China
| | - Yu Zhang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People's Republic of China
| | - Xin Huang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People's Republic of China
| | - Hejing Huang
- Department of Ultrasound, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People's Republic of China
| | - Weijun Wang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, People's Republic of China
| |
Collapse
|
14
|
Lodhi MS, Khalid F, Khan MT, Samra ZQ, Muhammad S, Zhang YJ, Mou K. A Novel Method of Magnetic Nanoparticles Functionalized with Anti-Folate Receptor Antibody and Methotrexate for Antibody Mediated Targeted Drug Delivery. Molecules 2022; 27:261. [PMID: 35011493 PMCID: PMC8747068 DOI: 10.3390/molecules27010261] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Therapeutic effects of anticancer medicines can be improved by targeting the specific receptors on cancer cells. Folate receptor (FR) targeting with antibody (Ab) is an effective tool to deliver anticancer drugs to the cancer cell. In this research project, a novel formulation of targeting drug delivery was designed, and its anticancer effects were analyzed. Folic acid-conjugated magnetic nanoparticles (MNPs) were used for the purification of folate receptors through a novel magnetic affinity purification method. Antibodies against the folate receptors and methotrexate (MTX) were developed and characterized with enzyme-linked immunosorbent assay and Western blot. Targeting nanomedicines (MNP-MTX-FR Ab) were synthesized by engineering the MNP with methotrexate and anti-folate receptor antibody (anti-FR Ab). The cytotoxicity of nanomedicines on HeLa cells was analyzed by calculating the % age cell viability. A fluorescent study was performed with HeLa cells and tumor tissue sections to analyze the binding efficacy and intracellular tracking of synthesized nanomedicines. MNP-MTX-FR Ab demonstrated good cytotoxicity along all the nanocomposites, which confirms that the antibody-coated medicine possesses the potential affinity to destroy cancer cells in the targeted drug delivery process. Immunohistochemical approaches and fluorescent study further confirmed their uptake by FRs on the tumor cells' surface in antibody-mediated endocytosis. The current approach is a useful addition to targeted drug delivery for better management of cancer therapy along with immunotherapy in the future.
Collapse
Affiliation(s)
- Madeeha Shahzad Lodhi
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54890, Pakistan; (F.K.); (Z.Q.S.)
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 58810, Pakistan;
| | - Fatima Khalid
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54890, Pakistan; (F.K.); (Z.Q.S.)
| | - Muhammad Tahir Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 58810, Pakistan;
| | - Zahoor Qadir Samra
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore 54890, Pakistan; (F.K.); (Z.Q.S.)
| | - Shabbir Muhammad
- Department of Physics, College of Science, King Khalid University, Abha 61413, Saudi Arabia;
| | - Yu-Juan Zhang
- College of Life Sciences, Chongqing Normal University, Shapingba, Chongqing 401331, China;
| | - Kejie Mou
- Department of Neurosurgery, Bishan Hospital of Chongqing, Chongqing 402760, China
| |
Collapse
|
15
|
Freitas LF, Ferreira AH, Thipe VC, Varca GHC, Lima CSA, Batista JGS, Riello FN, Nogueira K, Cruz CPC, Mendes GOA, Rodrigues AS, Sousa TS, Alves VM, Lugão AB. The State of the Art of Theranostic Nanomaterials for Lung, Breast, and Prostate Cancers. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2579. [PMID: 34685018 PMCID: PMC8539690 DOI: 10.3390/nano11102579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/14/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023]
Abstract
The synthesis and engineering of nanomaterials offer more robust systems for the treatment of cancer, with technologies that combine therapy with imaging diagnostic tools in the so-called nanotheranostics. Among the most studied systems, there are quantum dots, liposomes, polymeric nanoparticles, inorganic nanoparticles, magnetic nanoparticles, dendrimers, and gold nanoparticles. Most of the advantages of nanomaterials over the classic anticancer therapies come from their optimal size, which prevents the elimination by the kidneys and enhances their permeation in the tumor due to the abnormal blood vessels present in cancer tissues. Furthermore, the drug delivery and the contrast efficiency for imaging are enhanced, especially due to the increased surface area and the selective accumulation in the desired tissues. This property leads to the reduced drug dose necessary to exert the desired effect and for a longer action within the tumor. Finally, they are made so that there is no degradation into toxic byproducts and have a lower immune response triggering. In this article, we intend to review and discuss the state-of-the-art regarding the use of nanomaterials as therapeutic and diagnostic tools for lung, breast, and prostate cancer, as they are among the most prevalent worldwide.
Collapse
Affiliation(s)
- Lucas F. Freitas
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Aryel H. Ferreira
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
- MackGraphe-Graphene and Nanomaterial Research Center, Mackenzie Presbyterian University, Sao Paulo 01302-907, Brazil
| | - Velaphi C. Thipe
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Gustavo H. C. Varca
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Caroline S. A. Lima
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Jorge G. S. Batista
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Fabiane N. Riello
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Kamila Nogueira
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Cassia P. C. Cruz
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Giovanna O. A. Mendes
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Adriana S. Rodrigues
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Thayna S. Sousa
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Victoria M. Alves
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Ademar B. Lugão
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| |
Collapse
|