1
|
Zhang H, Sun F, Cao H, Yang L, Yang F, Chen R, Jiang S, Wang R, Yu X, Li B, Chu X. UBA protein family: An emerging set of E1 ubiquitin ligases in cancer-A review. Int J Biol Macromol 2025; 308:142277. [PMID: 40120894 DOI: 10.1016/j.ijbiomac.2025.142277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
The Ubiquitin A (UBA) protein family contains seven members that protect themselves or their interacting proteins from proteasome degradation. The UBA protein family regulates cell proliferation, cell cycle, invasion, migration, apoptosis, autophagy, tissue differentiation, and immune response. With the deepening of research, the UBA protein family has been found to be abnormally expressed in a variety of tumor diseases, and the clarification of its relationship with tumor diseases can be used as a molecular therapeutic target and have an important role in the prognosis of tumors. In this paper, we review the structure, biological process, target therapy, and biomarkers of the UBA protein family to provide new ideas for the diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Huhu Zhang
- Department of Cardiology, the Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266100, Shandong, China; Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Fulin Sun
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China; Health Science Center, Qingdao University, Qingdao 266071, China
| | - Hongyu Cao
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China; Health Science Center, Qingdao University, Qingdao 266071, China
| | - Lina Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Ruolan Chen
- Department of Cardiology, the Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266100, Shandong, China
| | - Shuyao Jiang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China; Health Science Center, Qingdao University, Qingdao 266071, China
| | - Ruixuan Wang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China; Health Science Center, Qingdao University, Qingdao 266071, China
| | - Xin Yu
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China; Health Science Center, Qingdao University, Qingdao 266071, China
| | - Bing Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Xianming Chu
- Department of Cardiology, the Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266100, Shandong, China.
| |
Collapse
|
2
|
Sokołowski M, Kwasna D, Ravichandran KE, Eggers C, Krutyhołowa R, Kaczmarczyk M, Skupien-Rabian B, Jaciuk M, Walczak M, Dahate P, Pabis M, Jemioła-Rzemińska M, Jankowska U, Leidel SA, Glatt S. Molecular basis for thiocarboxylation and release of Urm1 by its E1-activating enzyme Uba4. Nucleic Acids Res 2024; 52:13980-13995. [PMID: 39673271 DOI: 10.1093/nar/gkae1111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/22/2024] [Accepted: 11/18/2024] [Indexed: 12/16/2024] Open
Abstract
Ubiquitin-related modifier 1 (Urm1) is a highly conserved member of the ubiquitin-like (UBL) family of proteins. Urm1 is a key component of the eukaryotic transfer RNA (tRNA) thiolation cascade, responsible for introducing sulfur at wobble uridine (U34) in several eukaryotic tRNAs. Urm1 must be thiocarboxylated (Urm1-SH) by its E1 activating enzyme UBL protein activator 4 (Uba4). Uba4 first adenylates and then thiocarboxylates the C-terminus of Urm1 using its adenyl-transferase (AD) and rhodanese (RHD) domains. However, the detailed mechanisms of Uba4, the interplay between the two domains, and the release of Urm1 remain elusive. Here, we report a cryo-EM-based structural model of the Uba4/Urm1 complex that reveals the position of its RHD domains after Urm1 binding, and by analyzing the in vitro and in vivo consequence of mutations at the interface, we show its importance for the thiocarboxylation of Urm1. Our results confirm that the formation of the Uba4-Urm1 thioester and thiocarboxylation of Urm1's C-terminus depend on conserved cysteine residues of Uba4 and that the complex avoids unwanted side-reactions of the adenylate by forming a thioester intermediate. We show how the Urm1-SH product can be released and how Urm1 interacts with upstream (Tum1) and downstream (Ncs6) components of the pathway. Our work provides a detailed mechanistic description of the reaction steps that are needed to produce Urm1-SH, which is required to thiolate tRNAs and persulfidate proteins.
Collapse
Affiliation(s)
- Mikołaj Sokołowski
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Gronostajowa7a, 30-387 Krakow, Poland
- Postgraduate School of Molecular Medicine, Zwirki i Wigury 61, 02-091 Warsaw, Poland
| | - Dominika Kwasna
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Gronostajowa7a, 30-387 Krakow, Poland
| | - Keerthiraju E Ravichandran
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Gronostajowa7a, 30-387 Krakow, Poland
- Postgraduate School of Molecular Medicine, Zwirki i Wigury 61, 02-091 Warsaw, Poland
| | - Cristian Eggers
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Rościsław Krutyhołowa
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Gronostajowa7a, 30-387 Krakow, Poland
| | - Magdalena Kaczmarczyk
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Gronostajowa7a, 30-387 Krakow, Poland
| | - Bozena Skupien-Rabian
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Gronostajowa7a, 30-387 Krakow, Poland
| | - Marcin Jaciuk
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Gronostajowa7a, 30-387 Krakow, Poland
| | - Marta Walczak
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Gronostajowa7a, 30-387 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, prof. S. Łojasiewicza 11, 30-348 Krakow, Poland
| | - Priyanka Dahate
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Gronostajowa7a, 30-387 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, prof. S. Łojasiewicza 11, 30-348 Krakow, Poland
| | - Marta Pabis
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Gronostajowa7a, 30-387 Krakow, Poland
| | - Małgorzata Jemioła-Rzemińska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Urszula Jankowska
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Gronostajowa7a, 30-387 Krakow, Poland
| | - Sebastian A Leidel
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Gronostajowa7a, 30-387 Krakow, Poland
- Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
3
|
Cairo LV, Hong X, Müller MBD, Yuste-Checa P, Jagadeesan C, Bracher A, Park SH, Hayer-Hartl M, Hartl FU. Stress-dependent condensate formation regulated by the ubiquitin-related modifier Urm1. Cell 2024; 187:4656-4673.e28. [PMID: 38942013 DOI: 10.1016/j.cell.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 04/12/2024] [Accepted: 06/08/2024] [Indexed: 06/30/2024]
Abstract
The ability of proteins and RNA to coalesce into phase-separated assemblies, such as the nucleolus and stress granules, is a basic principle in organizing membraneless cellular compartments. While the constituents of biomolecular condensates are generally well documented, the mechanisms underlying their formation under stress are only partially understood. Here, we show in yeast that covalent modification with the ubiquitin-like modifier Urm1 promotes the phase separation of a wide range of proteins. We find that the drop in cellular pH induced by stress triggers Urm1 self-association and its interaction with both target proteins and the Urm1-conjugating enzyme Uba4. Urmylation of stress-sensitive proteins promotes their deposition into stress granules and nuclear condensates. Yeast cells lacking Urm1 exhibit condensate defects that manifest in reduced stress resilience. We propose that Urm1 acts as a reversible molecular "adhesive" to drive protective phase separation of functionally critical proteins under cellular stress.
Collapse
Affiliation(s)
- Lucas V Cairo
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Xiaoyu Hong
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Martin B D Müller
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Patricia Yuste-Checa
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Chandhuru Jagadeesan
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andreas Bracher
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sae-Hun Park
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
4
|
Kaminskaya AN, Evpak AS, Belogurov AA, Kudriaeva AA. Tracking of Ubiquitin Signaling through 3.5 Billion Years of Combinatorial Conjugation. Int J Mol Sci 2024; 25:8671. [PMID: 39201358 PMCID: PMC11354881 DOI: 10.3390/ijms25168671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Ubiquitination is an evolutionary, ancient system of post-translational modification of proteins that occurs through a cascade involving ubiquitin activation, transfer, and conjugation. The maturation of this system has followed two main pathways. The first is the conservation of a universal structural fold of ubiquitin and ubiquitin-like proteins, which are present in both Archaea and Bacteria, as well as in multicellular Eukaryotes. The second is the rise of the complexity of the superfamily of ligases, which conjugate ubiquitin-like proteins to substrates, in terms of an increase in the number of enzyme variants, greater variation in structural organization, and the diversification of their catalytic domains. Here, we examine the diversity of the ubiquitination system among different organisms, assessing the variety and conservation of the key domains of the ubiquitination enzymes and ubiquitin itself. Our data show that E2 ubiquitin-conjugating enzymes of metazoan phyla are highly conservative, whereas the homology of E3 ubiquitin ligases with human orthologues gradually decreases depending on "molecular clock" timing and evolutionary distance. Surprisingly, Chordata and Echinodermata, which diverged over 0.5 billion years ago during the Cambrian explosion, share almost the same homology with humans in the amino acid sequences of E3 ligases but not in their adaptor proteins. These observations may suggest that, firstly, the E2 superfamily already existed in its current form in the last common metazoan ancestor and was generally not affected by purifying selection in metazoans. Secondly, it may indicate convergent evolution of the ubiquitination system and highlight E3 adaptor proteins as the "upper deck" of the ubiquitination system, which plays a crucial role in chordate evolution.
Collapse
Affiliation(s)
- Alena N. Kaminskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.N.K.); (A.S.E.)
| | - Alena S. Evpak
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.N.K.); (A.S.E.)
| | - Alexey A. Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.N.K.); (A.S.E.)
- Department of Biological Chemistry, Russian University of Medicine, Ministry of Health of Russian Federation, 127473 Moscow, Russia
| | - Anna A. Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.N.K.); (A.S.E.)
| |
Collapse
|
5
|
Alsohaibani R, Claudel AL, Perchat-Varlet R, Boutserin S, Talfournier F, Boschi-Muller S, Selles B. Rhodanese-Fold Containing Proteins in Humans: Not Just Key Players in Sulfur Trafficking. Antioxidants (Basel) 2023; 12:antiox12040843. [PMID: 37107218 PMCID: PMC10135228 DOI: 10.3390/antiox12040843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The Rhodanese-fold is a ubiquitous structural domain present in various protein subfamilies associated with different physiological functions or pathophysiological conditions in humans. Proteins harboring a Rhodanese domain are diverse in terms of domain architecture, with some representatives exhibiting one or several Rhodanese domains, fused or not to other structural domains. The most famous Rhodanese domains are catalytically active, thanks to an active-site loop containing an essential cysteine residue which allows for catalyzing sulfur transfer reactions involved in sulfur trafficking, hydrogen sulfide metabolism, biosynthesis of molybdenum cofactor, thio-modification of tRNAs or protein urmylation. In addition, they also catalyse phosphatase reactions linked to cell cycle regulation, and recent advances proposed a new role into tRNA hydroxylation, illustrating the catalytic versatility of Rhodanese domain. To date, no exhaustive analysis of Rhodanese containing protein equipment from humans is available. In this review, we focus on structural and biochemical properties of human-active Rhodanese-containing proteins, in order to provide a picture of their established or putative key roles in many essential biological functions.
Collapse
|
6
|
Ilic D, Magnussen HM, Tirard M. Stress - Regulation of SUMO conjugation and of other Ubiquitin-Like Modifiers. Semin Cell Dev Biol 2022; 132:38-50. [PMID: 34996712 DOI: 10.1016/j.semcdb.2021.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
Stress is unavoidable and essential to cellular and organismal evolution and failure to adapt or restore homeostasis can lead to severe diseases or even death. At the cellular level, stress drives a plethora of molecular changes, of which variations in the profile of protein post-translational modifications plays a key role in mediating the adaptative response of the genome and proteome to stress. In this context, post-translational modification of proteins by ubiquitin-like modifiers, (Ubl), notably SUMO, is an essential stress response mechanism. In this review, aiming to draw universal concepts of the Ubls stress response, we will decipher how stress alters the expression level, activity, specificity and/or localization of the proteins involved in the conjugation pathways of the various type-I Ubls, and how this result in the modification of particular Ubl targets that will translate an adaptive physiological stress response and allow cells to restore homeostasis.
Collapse
Affiliation(s)
- Dragana Ilic
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg; Faculty of Biology, University of Freiburg, D-79104 Freiburg; Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, D-37075 Göttingen
| | - Helge M Magnussen
- MRC Protein Phosphorylation and Ubiquitination Unit, Sir James Black Center, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, D-37075 Göttingen.
| |
Collapse
|
7
|
Ravichandran KE, Kaduhr L, Skupien‐Rabian B, Shvetsova E, Sokołowski M, Krutyhołowa R, Kwasna D, Brachmann C, Lin S, Guzman Perez S, Wilk P, Kösters M, Grudnik P, Jankowska U, Leidel SA, Schaffrath R, Glatt S. E2/E3-independent ubiquitin-like protein conjugation by Urm1 is directly coupled to cysteine persulfidation. EMBO J 2022; 41:e111318. [PMID: 36102610 PMCID: PMC9574740 DOI: 10.15252/embj.2022111318] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Post-translational modifications by ubiquitin-like proteins (UBLs) are essential for nearly all cellular processes. Ubiquitin-related modifier 1 (Urm1) is a unique UBL, which plays a key role in tRNA anticodon thiolation as a sulfur carrier protein (SCP) and is linked to the noncanonical E1 enzyme Uba4 (ubiquitin-like protein activator 4). While Urm1 has also been observed to conjugate to target proteins like other UBLs, the molecular mechanism of its attachment remains unknown. Here, we reconstitute the covalent attachment of thiocarboxylated Urm1 to various cellular target proteins in vitro, revealing that, unlike other known UBLs, this process is E2/E3-independent and requires oxidative stress. Furthermore, we present the crystal structures of the peroxiredoxin Ahp1 before and after the covalent attachment of Urm1. Surprisingly, we show that urmylation is accompanied by the transfer of sulfur to cysteine residues in the target proteins, also known as cysteine persulfidation. Our results illustrate the role of the Uba4-Urm1 system as a key evolutionary link between prokaryotic SCPs and the UBL modifications observed in modern eukaryotes.
Collapse
Affiliation(s)
- Keerthiraju E Ravichandran
- Malopolska Centre of Biotechnology (MCB)Jagiellonian UniversityKrakowPoland
- Postgraduate School of Molecular MedicineWarsawPoland
| | - Lars Kaduhr
- Department for Microbiology, Institute for BiologyUniversity of KasselKasselGermany
| | | | - Ekaterina Shvetsova
- Department of Chemistry, Biochemistry and Pharmaceutical SciencesUniversity of BernBernSwitzerland
- Graduate School for Cellular and Biomedical Sciences (GCB)University of BernBernSwitzerland
| | - Mikołaj Sokołowski
- Malopolska Centre of Biotechnology (MCB)Jagiellonian UniversityKrakowPoland
- Postgraduate School of Molecular MedicineWarsawPoland
| | - Ros´cisław Krutyhołowa
- Malopolska Centre of Biotechnology (MCB)Jagiellonian UniversityKrakowPoland
- Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Dominika Kwasna
- Malopolska Centre of Biotechnology (MCB)Jagiellonian UniversityKrakowPoland
| | - Cindy Brachmann
- Department for Microbiology, Institute for BiologyUniversity of KasselKasselGermany
| | - Sean Lin
- Max Planck Institute of BiochemistryMartinsriedGermany
| | - Sebastian Guzman Perez
- Malopolska Centre of Biotechnology (MCB)Jagiellonian UniversityKrakowPoland
- Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Piotr Wilk
- Malopolska Centre of Biotechnology (MCB)Jagiellonian UniversityKrakowPoland
| | - Manuel Kösters
- Department of Chemistry, Biochemistry and Pharmaceutical SciencesUniversity of BernBernSwitzerland
- Graduate School for Cellular and Biomedical Sciences (GCB)University of BernBernSwitzerland
| | - Przemysław Grudnik
- Malopolska Centre of Biotechnology (MCB)Jagiellonian UniversityKrakowPoland
| | - Urszula Jankowska
- Malopolska Centre of Biotechnology (MCB)Jagiellonian UniversityKrakowPoland
| | - Sebastian A Leidel
- Department of Chemistry, Biochemistry and Pharmaceutical SciencesUniversity of BernBernSwitzerland
| | - Raffael Schaffrath
- Department for Microbiology, Institute for BiologyUniversity of KasselKasselGermany
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology (MCB)Jagiellonian UniversityKrakowPoland
| |
Collapse
|
8
|
Xiao Q, Li J, Chen J, Tan Q, Chen X, Li H, Zhao X, Zhang X. Uba1: A Potential Ubiquitin-like Activator Protein of Urm1 in Toxoplasma gondii. Int J Mol Sci 2022; 23:ijms231810298. [PMID: 36142209 PMCID: PMC9499322 DOI: 10.3390/ijms231810298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
We had shown in our previous study that TgUrm1 (ubiquitin-related Modifier 1) was involved in the regulation of anti-oxidant stress in Toxoplasma gondii by conjugating with TgAhp1. It is generally believed that Urm1 binds to target proteins through a mechanism involving Uba (ubiquitin-like activator protein). Here, we identified the TgUrm1-exclusive ubiquitin-like activator-TgUba1, which was located in the cytoplasm of Toxoplasma. TgUba1 contained three domains, including the atrophin-1 domain (ANT1), the E1-like domain (AD), and the rhodanese homology domain (RHD). We explored the interaction of TgUba1 with TgUrm1, and the AD domain was essential for the interaction of the two proteins. The TgUba1 knockout and complementary mutants were obtained based on CRISPR/Cas9 gene editing technology. The knockout of TgUba1 attenuated parasite proliferation and virulence in mice, but not invasion and egress processes, revealing the pivotal role played by TgUba1 in T. gondii survival. Meanwhile, the conjugate band of TgUrm1 was significantly reduced under oxidative stress stimulation without TgUba1, indicating that TgUba1 enhanced the targeted conjugation ability of TgUrm1 in response to oxidative stress, especially under diamide (Dia) stimulation. Furthermore, eleven TgUba1-interacting proteins were identified by proximity-based protein labeling techniques, relating them to ubiquitin-like modifications, anti-oxidative stress and metabolic regulation processes. In conclusion, TgUba1 was essential for T. gondii survival and might be a potential ubiquitin-like activator protein for TgUrm1.
Collapse
Affiliation(s)
- Qianqian Xiao
- Room 115, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Jinxuan Li
- Room 115, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Junpeng Chen
- Room 115, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Qianqian Tan
- Room 115, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Xiao Chen
- Room 115, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Hongmei Li
- Room 115, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Xiaomin Zhao
- Room 115, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (X.Z.); (X.Z.)
| | - Xiao Zhang
- Room 115, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (X.Z.); (X.Z.)
| |
Collapse
|
9
|
Kaduhr L, Brachmann C, Ravichandran KE, West JD, Glatt S, Schaffrath R. Urm1, not quite a ubiquitin-like modifier? MICROBIAL CELL 2021; 8:256-261. [PMID: 34782858 PMCID: PMC8561144 DOI: 10.15698/mic2021.11.763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/27/2022]
Abstract
Ubiquitin related modifier 1 (Urm1) is a unique eukaryotic member of the ubiquitin-fold (UbF) protein family and conserved from yeast to humans. Urm1 is dual-functional, acting both as a sulfur carrier for thiolation of tRNA anticodons and as a protein modifier in a lysine-directed Ub-like conjugation also known as urmylation. Although Urm1 conjugation coincides with oxidative stress and targets proteins like 2-Cys peroxiredoxins from yeast (Ahp1) and fly (Prx5), it was unclear how urmylation proceeds molecularly and whether it is affected by the activity of these antioxidant enzymes. An in-depth study of Ahp1 urmylation in yeast from our laboratory (Brachmann et al., 2020) uncovered that promiscuous lysine target sites and specific redox requirements determine the Urm1 acceptor activity of the peroxiredoxin. The results clearly show that the dimer interface and the 2-Cys based redox-active centers of Ahp1 are affecting the Urm1 conjugation reaction. Together with in vivo assays demonstrating that high organic peroxide concentrations can prevent Ahp1 from being urmylated, Brachmann et al. provide insights into a potential link between Urm1 utilization and oxidant defense of cells. Here, we highlight these major findings and discuss wider implications with regards to an emerging link between Urm1 conjugation and redox biology. Moreover, from these studies we propose to redefine our perspective on Urm1 and the molecular nature of urmylation, a post-translational conjugation that may not be that ubiquitin-like after all.
Collapse
Affiliation(s)
- Lars Kaduhr
- Universität Kassel, Institut für Biologie, Fachgebiet Mikrobiologie, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Cindy Brachmann
- Universität Kassel, Institut für Biologie, Fachgebiet Mikrobiologie, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Keerthiraju Ethiraju Ravichandran
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.,Postgraduate School of Molecular Medicine, 02-091 Warsaw, Poland
| | - James D West
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, OH, USA
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Raffael Schaffrath
- Universität Kassel, Institut für Biologie, Fachgebiet Mikrobiologie, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| |
Collapse
|
10
|
Ye Q, Singh S, Qian PR, Guo NL. Immune-Omics Networks of CD27, PD1, and PDL1 in Non-Small Cell Lung Cancer. Cancers (Basel) 2021; 13:4296. [PMID: 34503105 PMCID: PMC8428355 DOI: 10.3390/cancers13174296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 01/03/2023] Open
Abstract
To date, there are no prognostic/predictive biomarkers to select chemotherapy, immunotherapy, and radiotherapy in individual non-small cell lung cancer (NSCLC) patients. Major immune-checkpoint inhibitors (ICIs) have more DNA copy number variations (CNV) than mutations in The Cancer Genome Atlas (TCGA) NSCLC tumors. Nevertheless, CNV-mediated dysregulated gene expression in NSCLC is not well understood. Integrated CNV and transcriptional profiles in NSCLC tumors (n = 371) were analyzed using Boolean implication networks for the identification of a multi-omics CD27, PD1, and PDL1 network, containing novel prognostic genes and proliferation genes. A 5-gene (EIF2AK3, F2RL3, FOSL1, SLC25A26, and SPP1) prognostic model was developed and validated for patient stratification (p < 0.02, Kaplan-Meier analyses) in NSCLC tumors (n = 1163). A total of 13 genes (COPA, CSE1L, EIF2B3, LSM3, MCM5, PMPCB, POLR1B, POLR2F, PSMC3, PSMD11, RPL32, RPS18, and SNRPE) had a significant impact on proliferation in 100% of the NSCLC cell lines in both CRISPR-Cas9 (n = 78) and RNA interference (RNAi) assays (n = 92). Multiple identified genes were associated with chemoresponse and radiotherapy response in NSCLC cell lines (n = 117) and patient tumors (n = 966). Repurposing drugs were discovered based on this immune-omics network to improve NSCLC treatment.
Collapse
Affiliation(s)
- Qing Ye
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (Q.Y.); (S.S.); (P.R.Q.)
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Salvi Singh
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (Q.Y.); (S.S.); (P.R.Q.)
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Peter R. Qian
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (Q.Y.); (S.S.); (P.R.Q.)
| | - Nancy Lan Guo
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (Q.Y.); (S.S.); (P.R.Q.)
- Department of Occupational and Environmental Health Sciences, School of Public Health, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|