1
|
Fan T, Zhu J, Liu W, Qu R, Khan AU, Shi Y, Liu J, Zhou Z, Xu C, Dai J, Ouyang J. SUN1 inhibits osteogenesis and promotes adipogenesis of human adipose-derived stem cells by regulating α-tubulin and CD36 expression. J Cell Mol Med 2024; 28:e70143. [PMID: 39383106 PMCID: PMC11463318 DOI: 10.1111/jcmm.70143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/29/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024] Open
Abstract
Sad and UNC84 domain 1 (SUN1) is a kind of nuclear envelope protein with established involvement in cellular processes, including nuclear motility and meiosis. SUN1 plays an intriguing role in human adipose-derived stem cells (hASCs) differentiation; however, this role remains largely undefined. This study was undertaken to investigate the role of SUN1 in hASCs differentiation, as well as its underlying mechanisms. Employing siRNAs, we selectively downregulated SUN1 and CD36 expression. Microtubules were depolymerized using nocodazole, and PPARγ was activated using rosiglitazone. Western blotting was performed to quantify SUN1, PPARγ, α-tubulin, CD36, OPN, and adiponectin protein expression levels. Alkaline phosphatase and Oil red O staining were used to assess osteogenesis and adipogenesis, respectively. Downregulated SUN1 expression increased osteogenesis and decreased adipogenesis in hASCs, concomitant with upregulated α-tubulin expression and downregulated CD36 expression, alongside reduced nuclear localization of PPARγ. Microtubule depolymerization increased CD36 expression. Rescue experiments indicated that microtubule depolymerization counteracted the downregulated SUN1-induced phenotypic changes. This study demonstrates that SUN1 influences the differentiation of hASCs towards osteogenic and adipogenic lineages, indicating its essential role in cell fate.
Collapse
Affiliation(s)
- Tingyu Fan
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics & Guangdong Engineering Research Center for Translation of Medical 3D Printing Application & National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University) & National Key Discipline of Human Anatomy, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Jinhui Zhu
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics & Guangdong Engineering Research Center for Translation of Medical 3D Printing Application & National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University) & National Key Discipline of Human Anatomy, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Wenqing Liu
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics & Guangdong Engineering Research Center for Translation of Medical 3D Printing Application & National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University) & National Key Discipline of Human Anatomy, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics & Guangdong Engineering Research Center for Translation of Medical 3D Printing Application & National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University) & National Key Discipline of Human Anatomy, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Asmat Ullah Khan
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics & Guangdong Engineering Research Center for Translation of Medical 3D Printing Application & National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University) & National Key Discipline of Human Anatomy, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Yulian Shi
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics & Guangdong Engineering Research Center for Translation of Medical 3D Printing Application & National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University) & National Key Discipline of Human Anatomy, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Jiaxuan Liu
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics & Guangdong Engineering Research Center for Translation of Medical 3D Printing Application & National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University) & National Key Discipline of Human Anatomy, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Zhitao Zhou
- Central LaboratorySouthern Medical UniversityGuangzhouChina
| | - Chujiang Xu
- Department of Orthopedics, TCM‐Integrated HospitalSouthern Medical UniversityGuangzhouChina
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics & Guangdong Engineering Research Center for Translation of Medical 3D Printing Application & National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University) & National Key Discipline of Human Anatomy, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics & Guangdong Engineering Research Center for Translation of Medical 3D Printing Application & National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University) & National Key Discipline of Human Anatomy, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
2
|
Yang Y, Wu S, Qu R, Wang C, Wang J, Khan AU, Pan Y, Liu W, Zhu J, Khan MA, Xu C, Dai J, Ouyang J. Mechanical sensor PDLIM5 promotes the osteogenesis of human adipose-derived stem cells through microfilament alterations. Genes Dis 2024; 11:101023. [PMID: 38299198 PMCID: PMC10828594 DOI: 10.1016/j.gendis.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/15/2023] [Indexed: 02/02/2024] Open
Affiliation(s)
- Yuchao Yang
- Guangdong Provincial Key Laboratory of Medical Biomechanics & National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shutong Wu
- Guangdong Provincial Key Laboratory of Medical Biomechanics & National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics & National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Congrong Wang
- Department of Laboratory Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jinyang Wang
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Asmat Ullah Khan
- Guangdong Provincial Key Laboratory of Medical Biomechanics & National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - You Pan
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530000, China
| | - Wenqing Liu
- Guangdong Provincial Key Laboratory of Medical Biomechanics & National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jinhui Zhu
- Guangdong Provincial Key Laboratory of Medical Biomechanics & National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Muhammad Akram Khan
- Department of Veterinary Pathology, Faculty of Veterinary and Animal Sciences, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Chujiang Xu
- Department of Orthopedics, TCM-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics & National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics & National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
3
|
Wang H, Qi LL, Shema C, Jiang KY, Ren P, Wang H, Wang L. Advances in the role and mechanism of fibroblasts in fracture healing. Front Endocrinol (Lausanne) 2024; 15:1350958. [PMID: 38469138 PMCID: PMC10925620 DOI: 10.3389/fendo.2024.1350958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/01/2024] [Indexed: 03/13/2024] Open
Abstract
With the development of social population ageing, bone fracture has become a global public health problem due to its high morbidity, disability and mortality. Fracture healing is a complex phenomenon involving the coordinated participation of immigration, differentiation and proliferation of inflammatory cells, angioblasts, fibroblasts, chondroblasts and osteoblasts which synthesize and release bioactive substances of extracellular matrix components, Mortality caused by age-related bone fractures or osteoporosis is steadily increasing worldwide as the population ages. Fibroblasts play an important role in the process of fracture healing. However, it is not clear how the growth factors and extracellular matrix stiffness of the bone-regeneration microenvironment affects the function of osteoblasts and fibroblasts in healing process. Therefore, this article focuses on the role of fibroblasts in the process of fracture healing and mechanisms of research progress.
Collapse
Affiliation(s)
- Hui Wang
- Department of Orthopedics, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Li-li Qi
- Experimental Center for Teaching of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Clement Shema
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- International Education College of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Kui-ying Jiang
- National Demonstration Center for Experimental Basic Medical Education, Capital Medical University, Beijing, China
| | - Ping Ren
- Experimental Center for Teaching of Hebei Medical University, Shijiazhuang, Hebei, China
| | - He Wang
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lei Wang
- Department of Human Anatomy, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, Hebei, China
| |
Collapse
|
4
|
Li YY, Ji SF, Fu XB, Jiang YF, Sun XY. Biomaterial-based mechanical regulation facilitates scarless wound healing with functional skin appendage regeneration. Mil Med Res 2024; 11:13. [PMID: 38369464 PMCID: PMC10874556 DOI: 10.1186/s40779-024-00519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Scar formation resulting from burns or severe trauma can significantly compromise the structural integrity of skin and lead to permanent loss of skin appendages, ultimately impairing its normal physiological function. Accumulating evidence underscores the potential of targeted modulation of mechanical cues to enhance skin regeneration, promoting scarless repair by influencing the extracellular microenvironment and driving the phenotypic transitions. The field of skin repair and skin appendage regeneration has witnessed remarkable advancements in the utilization of biomaterials with distinct physical properties. However, a comprehensive understanding of the underlying mechanisms remains somewhat elusive, limiting the broader application of these innovations. In this review, we present two promising biomaterial-based mechanical approaches aimed at bolstering the regenerative capacity of compromised skin. The first approach involves leveraging biomaterials with specific biophysical properties to create an optimal scarless environment that supports cellular activities essential for regeneration. The second approach centers on harnessing mechanical forces exerted by biomaterials to enhance cellular plasticity, facilitating efficient cellular reprogramming and, consequently, promoting the regeneration of skin appendages. In summary, the manipulation of mechanical cues using biomaterial-based strategies holds significant promise as a supplementary approach for achieving scarless wound healing, coupled with the restoration of multiple skin appendage functions.
Collapse
Affiliation(s)
- Ying-Ying Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Shuai-Fei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Xiao-Bing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| | - Yu-Feng Jiang
- Department of Tissue Regeneration and Wound Repair, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Xiao-Yan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| |
Collapse
|
5
|
Peng Y, Qu R, Feng Y, Huang X, Yang Y, Fan T, Sun B, Khan AU, Wu S, Dai J, Ouyang J. Regulation of the integrin αVβ3- actin filaments axis in early osteogenesis of human fibroblasts under cyclic tensile stress. Stem Cell Res Ther 2021; 12:523. [PMID: 34620239 PMCID: PMC8496073 DOI: 10.1186/s13287-021-02597-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/11/2021] [Indexed: 11/23/2022] Open
Abstract
Background Integrins play a prominent role in osteogenic differentiation by transmitting both mechanical and chemical signals. Integrin expression is closely associated with tensile stress, which has a positive effect on osteogenic differentiation. We investigated the relationship between integrin αVβ3 and tensile stress. Methods Human fibroblasts were treated with c (RGDyk) and lentivirus transduction to inhibit function of integrin αVβ3. Y-15, cytochalasin D and verteporfin were used to inhibit phosphorylation of FAK, polymerization of microfilament and function of nuclear YAP, respectively. Fibroblasts were exposed to a cyclic tensile stress of 10% at 0.5 Hz, once a day for 2 h each application. Fibroblasts were harvested on day 4 and 7 post-treatment. The expression of ALP, RUNX2, integrin αVβ3, β-actin, talin-1, FAK, vinculin, and nuclear YAP was detected by Western blot or qRT-PCR. The expression and distribution of integrin αVβ3, vinculin, microfilament and nuclear YAP. Results Cyclic tensile stress was found to promote expression of ALP and RUNX2. Inhibition of integrin αVβ3 activation downregulated the rearrangement of microfilament and the expression of ALP, RUNX2 and nuclear YAP. When the polymerization of microfilament was inhibited the expression of ALP, RUNX2 and nuclear YAP were decreased. The phosphorylation of FAK induced by cyclic tensile stress reduced by the inhibition of integrin αVβ3. The expression of ALP and RUNX2 was decreased by inhibition of phosphorylation of FAK and inhibition of nuclear YAP. Conclusions Cyclic tensile stress promotes osteogenesis of human fibroblasts via integrin αVβ3-microfilament axis. Phosphorylation of FAK and nuclear YAP participates in this process. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02597-y.
Collapse
Affiliation(s)
- Yan Peng
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, 510000, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, 510000, China
| | - Yanting Feng
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, Guangdong, China
| | - Xiaolan Huang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, 510000, China
| | - Yuchao Yang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, 510000, China
| | - Tingyu Fan
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, 510000, China
| | - Bing Sun
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, 510000, China
| | - Asmat Ullah Khan
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, 510000, China
| | - Shutong Wu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, 510000, China
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, 510000, China.
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, 510000, China.
| |
Collapse
|