1
|
Sai Y, Ge W, Zhong L, Zhang Q, Xiao J, Shan Y, Ye W, Liu H, Liu S, Ye F, Wang X, Tang H, Zhao Y, Dan G. The role of the gut microbiota and the nicotinate/nicotinamide pathway in rotenone-induced neurotoxicity. Curr Res Toxicol 2024; 8:100212. [PMID: 39834518 PMCID: PMC11743872 DOI: 10.1016/j.crtox.2024.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
Rotenone is a natural compound from plants. It is widely used in pesticides because of highly toxic to insects and fish. However, lots of research has reported that rotenone has neurotoxic effects in humans. It is confirmed there is a correlation between rotenone exposure and Parkinson's disease (PD). Therefore, the role of gut microbiota and related metabolic pathways was investigated in rotenone-induced neurotoxicity. The results showed that the abundance of gut microbiota changed significantly. The differential metabolites were enriched in the nicotinate and nicotinamide metabolism pathways, which had the greatest impact on the entire metabolic system. The contents of acetic acid and butyric acid in intestinal tissues decreased significantly. Additionally, Interleukin-6 (IL-6), Tumor necrosis factor alpha (TNF-α) and vasoactive intestinal peptide (VIP) were significantly up-regulated, while gastrin (GAS) and Ghrelin were significantly down-regulated. Expression of intestinal tight junction protein was significantly reduced. Moreover, nicotinamide adenine dinucleotide (NAD+), a the product of the nicotinate/nicotinamide pathways, decreased significantly. And the expression levels of nicotinamide phosphoribosyl transferase (NAMPT) and Solute Carrier Family 25 Member 51 (SLC25A51) also reduced significantly. Therefore, gut microbiota was influenced obviously in rats exposed to rotenone, leading to a decrease of acetic acid and butyric acid contents, which might in turn affect the change of intestinal barrier permeability and induce inflammatory reactions. Meanwhile, the nicotinate/nicotinamide metabolic pathways might play an important role in rats exposed to rotenone.
Collapse
Affiliation(s)
- Yan Sai
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Wei Ge
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Li Zhong
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Qifu Zhang
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Jingsong Xiao
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Yaohui Shan
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Wenqi Ye
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Haoyin Liu
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Shulin Liu
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Feng Ye
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Xiaogang Wang
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - He Tang
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Yuanpeng Zhao
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Guorong Dan
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
| |
Collapse
|
2
|
Vo ATT, Mouli K, Liopo AV, Lorenzi P, Tan L, Wei B, Martinez SA, McHugh EA, Tour JM, Khan U, Derry PJ, Kent TA. Pleozymes: Pleiotropic Oxidized Carbon Nanozymes Enhance Cellular Metabolic Flexibility. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:2017. [PMID: 39728553 PMCID: PMC11728746 DOI: 10.3390/nano14242017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
Our group has synthesized a pleiotropic synthetic nanozyme redox mediator we term a "pleozyme" that displays multiple enzymatic characteristics, including acting as a superoxide dismutase mimetic, oxidizing NADH to NAD+, and oxidizing H2S to polysulfides and thiosulfate. Benefits have been seen in acute and chronic neurological disease models. The molecule is sourced from coconut-derived activated charcoal that has undergone harsh oxidization with fuming nitric acid, which alters the structure and chemical characteristics, yielding 3-8 nm discs with broad redox potential. Prior work showed pleozymes localize to mitochondria and increase oxidative phosphorylation and glycolysis. Here, we measured cellular NAD+ and NADH levels after pleozyme treatment and observed increased total cellular NADH levels but not total NAD+ levels. A 13C-glucose metabolic flux analysis suggested pleozymes stimulate the generation of pyruvate and lactate glycolytically and from the tricarboxylic acid (TCA) cycle, pointing to malate decarboxylation. Analysis of intracellular fatty acid abundances suggests pleozymes increased fatty acid β-oxidation, with a concomitant increase in succinyl- and acetyl-CoA. Pleozymes increased total ATP, potentially via flexible enhancement of NAD+-dependent catabolic pathways such as glycolysis, fatty acid β-oxidation, and metabolic flux through the TCA cycle. These effects may be favorable for pathologies that compromise metabolism such as brain injury.
Collapse
Affiliation(s)
- Anh T. T. Vo
- Center for Genomics and Precision Medicine, Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA; (A.T.T.V.); (K.M.); (A.V.L.); (U.K.)
| | - Karthik Mouli
- Center for Genomics and Precision Medicine, Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA; (A.T.T.V.); (K.M.); (A.V.L.); (U.K.)
| | - Anton V. Liopo
- Center for Genomics and Precision Medicine, Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA; (A.T.T.V.); (K.M.); (A.V.L.); (U.K.)
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (E.A.M.); (J.M.T.)
| | - Philip Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (P.L.); (L.T.); (B.W.); (S.A.M.)
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (P.L.); (L.T.); (B.W.); (S.A.M.)
| | - Bo Wei
- Metabolomics Core Facility, Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (P.L.); (L.T.); (B.W.); (S.A.M.)
| | - Sara A. Martinez
- Metabolomics Core Facility, Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (P.L.); (L.T.); (B.W.); (S.A.M.)
| | - Emily A. McHugh
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (E.A.M.); (J.M.T.)
- Smalley-Curl Institute, Rice University, Houston, TX 77005, USA
| | - James M. Tour
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (E.A.M.); (J.M.T.)
- Smalley-Curl Institute, Rice University, Houston, TX 77005, USA
- Rice Advanced Materials Institute, Rice University, Houston, TX 77005, USA
- The NanoCarbon Center, Rice University, Houston, TX 77005, USA
| | - Uffaf Khan
- Center for Genomics and Precision Medicine, Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA; (A.T.T.V.); (K.M.); (A.V.L.); (U.K.)
| | - Paul J. Derry
- Center for Genomics and Precision Medicine, Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA; (A.T.T.V.); (K.M.); (A.V.L.); (U.K.)
- School of Engineering Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Thomas A. Kent
- Center for Genomics and Precision Medicine, Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA; (A.T.T.V.); (K.M.); (A.V.L.); (U.K.)
- Department of Chemistry, Rice University, Houston, TX 77005, USA; (E.A.M.); (J.M.T.)
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital and Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
3
|
Zhang G, Wang N, Ma S, Wei Z, Tao P, Cai H. SLC25 family with energy metabolism and immunity in malignant tumors. ONCOLOGIE 2024; 26:65-77. [DOI: 10.1515/oncologie-2023-0280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Abstract
Solute Carrier Family 25 (SLC25) is the largest family of mitochondrial membrane proteins in the human body, consisting of 53 members. Mitochondrial phosphate carriers (MPiC), cellular iron metabolism, voltage-dependent anion channels (VDAC), and oxidative phosphorylation in the SLC25 family play dominant roles in material transport, energy metabolism, etc. SLC25 family-related proteins are involved in the regulation of the progression of a variety of cancers, including colon, gastric, and lung cancers. In addition, the SLC25 family has been implicated in endoplasmic reticulum stress (ERS) and immunity. Since SLC25 family proteins are involved in cancer progression and are associated with endoplasmic reticulum stress and immunity, exploring inhibitors of SLC25 family-related proteins is essential. However, the exact mechanism of SLC25 family-related proteins involved in cancer, as well as potential targets and SLC25 inhibitors have not been reported in the literature. This article focuses on summarizing the relevance of the SLC25 family to cancer, ERS, and immunity. This review also provides a comprehensive overview of SLC25 family-related inhibitors.
Collapse
Affiliation(s)
- Guiqian Zhang
- First Clinical Medical College , Gansu University of Chinese Medicine , Lanzhou , China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province , Gansu Provincial Hospital , Lanzhou , China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital , Lanzhou , China
- Cadre Ward of General Surgery Department , Gansu Provincial Hospital , Lanzhou , China
| | - Ning Wang
- First Clinical Medical College , Gansu University of Chinese Medicine , Lanzhou , China
| | - Shixun Ma
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province , Gansu Provincial Hospital , Lanzhou , China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital , Lanzhou , China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor , Gansu Provincial Hospital , Lanzhou , China
| | - Zhenhong Wei
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor , Gansu Provincial Hospital , Lanzhou , China
- Cadre Ward of General Surgery Department , Gansu Provincial Hospital , Lanzhou , China
| | - Pengxian Tao
- First Clinical Medical College , Gansu University of Chinese Medicine , Lanzhou , China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province , Gansu Provincial Hospital , Lanzhou , China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital , Lanzhou , China
- Institute of Clinical Medicine and Translational Medicine , Gansu Provincial People’s Hospital , Lanzhou , China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor , Gansu Provincial Hospital , Lanzhou , China
| | - Hui Cai
- First Clinical Medical College , Gansu University of Chinese Medicine , Lanzhou , China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province , Gansu Provincial Hospital , Lanzhou , China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital , Lanzhou , China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor , Gansu Provincial Hospital , Lanzhou , China
| |
Collapse
|
4
|
Goyal S, Cambronne XA. Layered mechanisms regulating the human mitochondrial NAD+ transporter SLC25A51. Biochem Soc Trans 2023; 51:1989-2004. [PMID: 38108469 PMCID: PMC10802112 DOI: 10.1042/bst20220318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/28/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
SLC25A51 is the primary mitochondrial NAD+ transporter in humans and controls many local reactions by mediating the influx of oxidized NAD+. Intriguingly, SLC25A51 lacks several key features compared with other members in the mitochondrial carrier family, thus its molecular mechanism has been unclear. A deeper understanding would shed light on the control of cellular respiration, the citric acid cycle, and free NAD+ concentrations in mammalian mitochondria. This review discusses recent insights into the transport mechanism of SLC25A51, and in the process highlights a multitiered regulation that governs NAD+ transport. The aspects regulating SLC25A51 import activity can be categorized as contributions from (1) structural characteristics of the transporter itself, (2) its microenvironment, and (3) distinctive properties of the transported ligand. These unique mechanisms further evoke compelling new ideas for modulating the activity of this transporter, as well as new mechanistic models for the mitochondrial carrier family.
Collapse
Affiliation(s)
- Shivansh Goyal
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Xiaolu A. Cambronne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
5
|
Cheng L, Deepak RK, Wang G, Meng Z, Tao L, Xie M, Chi W, Zhang Y, Yang M, Liao Y, Chen R, Liang Y, Zhang J, Huang Y, Wang W, Guo Z, Wang Y, Lin JD, Fan H, Chen L. Hepatic mitochondrial NAD + transporter SLC25A47 activates AMPKα mediating lipid metabolism and tumorigenesis. Hepatology 2023; 78:1828-1842. [PMID: 36804859 PMCID: PMC10653290 DOI: 10.1097/hep.0000000000000314] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/06/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND AIMS SLC25A47 was initially identified as a mitochondrial HCC-downregulated carrier protein, but its physiological functions and transport substrates are unknown. We aimed to investigate the physiological role of SLC25A47 in hepatic metabolism. APPROACH RESULTS In the treatment of hepatocytes with metformin, we found that metformin can transcriptionally activate the expression of Slc25a47 , which is required for AMP-activated protein kinase α (AMPKα) phosphorylation. Slc25a47 -deficient mice had increased hepatic lipid content, triglycerides, and cholesterol levels, and we found that Slc25a47 deficiency suppressed AMPKα phosphorylation and led to an increased accumulation of nuclear SREBPs, with elevated fatty acid and cholesterol biosynthetic activities. Conversely, when Slc25a47 was overexpressed in mouse liver, AMPKα was activated and resulted in the inhibition of lipogenesis. Moreover, using a diethylnitrosamine-induced mouse HCC model, we found that the deletion of Slc25a47 promoted HCC tumorigenesis and development through the activated mammalian target of rapamycin cascade. Employing homology modeling of SLC25A47 and virtual screening of the human metabolome database, we demonstrated that NAD + was an endogenous substrate for SLC25A47, and the activity of NAD + -dependent sirtuin 3 declined in Slc25a47 -deficient mice, followed by inactivation of AMPKα. CONCLUSIONS Our findings reveal that SLC25A47, a hepatocyte-specific mitochondrial NAD + transporter, is one of the pharmacological targets of metformin and regulates lipid homeostasis through AMPKα, and may serve as a potential drug target for treating NAFLD and HCC.
Collapse
Affiliation(s)
- Lili Cheng
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing China
- Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - R.N.V. Krishna Deepak
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Guoqiang Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing China
| | - Ziyi Meng
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing China
| | - Lei Tao
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing China
| | - Mengqing Xie
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing China
| | - Wenna Chi
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing China
| | - Yuming Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing China
| | - Mingming Yang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing China
| | - Yilie Liao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Ruiqun Chen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing China
| | - Yu Liang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing China
| | - Junyu Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing China
| | - Yuedong Huang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing China
| | - Weihua Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing China
| | - Zhiying Guo
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yunfang Wang
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jiandie D. Lin
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ligong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing China
- Advanced Innovation Center for Human Brain Protection, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Tai J, Guerra RM, Rogers SW, Fang Z, Muehlbauer LK, Shishkova E, Overmyer KA, Coon JJ, Pagliarini DJ. Hem25p is required for mitochondrial IPP transport in fungi. Nat Cell Biol 2023; 25:1616-1624. [PMID: 37813972 PMCID: PMC10759932 DOI: 10.1038/s41556-023-01250-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/05/2023] [Indexed: 10/11/2023]
Abstract
Coenzyme Q (CoQ, ubiquinone) is an essential cellular cofactor composed of a redox-active quinone head group and a long hydrophobic polyisoprene tail. How mitochondria access cytosolic isoprenoids for CoQ biosynthesis is a longstanding mystery. Here, via a combination of genetic screening, metabolic tracing and targeted uptake assays, we reveal that Hem25p-a mitochondrial glycine transporter required for haem biosynthesis-doubles as an isopentenyl pyrophosphate (IPP) transporter in Saccharomyces cerevisiae. Mitochondria lacking Hem25p failed to efficiently incorporate IPP into early CoQ precursors, leading to loss of CoQ and turnover of CoQ biosynthetic proteins. Expression of Hem25p in Escherichia coli enabled robust IPP uptake and incorporation into the CoQ biosynthetic pathway. HEM25 orthologues from diverse fungi, but not from metazoans, were able to rescue hem25∆ CoQ deficiency. Collectively, our work reveals that Hem25p drives the bulk of mitochondrial isoprenoid transport for CoQ biosynthesis in fungi.
Collapse
Affiliation(s)
- Jonathan Tai
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA
| | - Rachel M Guerra
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA
| | - Sean W Rogers
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA
| | - Zixiang Fang
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA
| | - Laura K Muehlbauer
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Evgenia Shishkova
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Katherine A Overmyer
- Morgridge Institute for Research, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua J Coon
- Morgridge Institute for Research, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - David J Pagliarini
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Morgridge Institute for Research, Madison, WI, USA.
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA.
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
7
|
Vardar Acar N, Özgül RK. A big picture of the mitochondria-mediated signals: From mitochondria to organism. Biochem Biophys Res Commun 2023; 678:45-61. [PMID: 37619311 DOI: 10.1016/j.bbrc.2023.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Mitochondria, well-known for years as the powerhouse and biosynthetic center of the cell, are dynamic signaling organelles beyond their energy production and biosynthesis functions. The metabolic functions of mitochondria, playing an important role in various biological events both in physiological and stress conditions, transform them into important cellular stress sensors. Mitochondria constantly communicate with the rest of the cell and even from other cells to the organism, transmitting stress signals including oxidative and reductive stress or adaptive signals such as mitohormesis. Mitochondrial signal transduction has a vital function in regulating integrity of human genome, organelles, cells, and ultimately organism.
Collapse
Affiliation(s)
- Neşe Vardar Acar
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - R Köksal Özgül
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
8
|
Goyal S, Paspureddi A, Lu M, Chan H, Lyons SN, Wilson CN, Niere M, Ziegler M, Cambronne XA. Dynamics of SLC25A51 reveal preference for oxidized NAD + and substrate led transport. EMBO Rep 2023; 24:e56596. [PMID: 37575034 PMCID: PMC10561365 DOI: 10.15252/embr.202256596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023] Open
Abstract
SLC25A51 is a member of the mitochondrial carrier family (MCF) but lacks key residues that contribute to the mechanism of other nucleotide MCF transporters. Thus, how SLC25A51 transports NAD+ across the inner mitochondrial membrane remains unclear. To elucidate its mechanism, we use Molecular Dynamics simulations to reconstitute SLC25A51 homology models into lipid bilayers and to generate hypotheses to test. We observe spontaneous binding of cardiolipin phospholipids to three distinct sites on the exterior of SLC25A51's central pore and find that mutation of these sites impairs cardiolipin binding and transporter activity. We also observe that stable formation of the required matrix gate is controlled by a single salt bridge. We identify binding sites in SLC25A51 for NAD+ and show that its selectivity for NAD+ is guided by an electrostatic interaction between the charged nicotinamide ring in the ligand and a negatively charged patch in the pore. In turn, interaction of NAD+ with interior residue E132 guides the ligand to dynamically engage and weaken the salt bridge gate, representing a ligand-induced initiation of transport.
Collapse
Affiliation(s)
- Shivansh Goyal
- Department of Molecular BiosciencesUniversity of Texas at AustinAustinTXUSA
| | | | - Mu‐Jie Lu
- Department of Molecular BiosciencesUniversity of Texas at AustinAustinTXUSA
| | - Hsin‐Ru Chan
- Department of Molecular BiosciencesUniversity of Texas at AustinAustinTXUSA
| | - Scott N Lyons
- Department of Molecular BiosciencesUniversity of Texas at AustinAustinTXUSA
| | - Crystal N Wilson
- Department of Molecular BiosciencesUniversity of Texas at AustinAustinTXUSA
| | - Marc Niere
- Department of BiomedicineUniversity of BergenBergenNorway
| | | | - Xiaolu A Cambronne
- Department of Molecular BiosciencesUniversity of Texas at AustinAustinTXUSA
- Livestrong Cancer InstituteUniversity of Texas at AustinAustinTXUSA
| |
Collapse
|
9
|
Ehlers JS, Bracke K, von Bohlen Und Halbach V, Siegerist F, Endlich N, von Bohlen Und Halbach O. Morphological and behavioral analysis of Slc35f1-deficient mice revealed no neurodevelopmental phenotype. Brain Struct Funct 2023; 228:895-906. [PMID: 36951990 PMCID: PMC10147817 DOI: 10.1007/s00429-023-02629-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/09/2023] [Indexed: 03/24/2023]
Abstract
SLC35F1 is a member of the sugar-like carrier (SLC) superfamily that is expressed in the mammalian brain. Malfunction of SLC35F1 in humans is associated with neurodevelopmental disorders. To get insight into the possible roles of Slc35f1 in the brain, we generated Slc35f1-deficient mice. The Slc35f1-deficient mice are viable and survive into adulthood, which allowed examining adult Slc35f1-deficient mice on the anatomical as well as behavioral level. In humans, mutation in the SLC35F1 gene can induce a Rett syndrome-like phenotype accompanied by intellectual disability (Fede et al. Am J Med Genet A 185:2238-2240, 2021). The Slc35f1-deficient mice, however, display only a very mild phenotype and no obvious deficits in learning and memory as, e.g., monitored with the novel object recognition test or the Morris water maze test. Moreover, neuroanatomical parameters of neuronal plasticity (as dendritic spines and adult hippocampal neurogenesis) are also unaltered. Thus, Slc35f1-deficient mice display no major alterations that resemble a neurodevelopmental phenotype.
Collapse
Affiliation(s)
- Julia Sophie Ehlers
- Institute for Anatomy and Cell Biology, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23C, 17487, Greifswald, Germany
| | - Katharina Bracke
- Institute for Anatomy and Cell Biology, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23C, 17487, Greifswald, Germany
| | - Viola von Bohlen Und Halbach
- Institute for Anatomy and Cell Biology, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23C, 17487, Greifswald, Germany
| | - Florian Siegerist
- Institute for Anatomy and Cell Biology, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23C, 17487, Greifswald, Germany
| | - Nicole Endlich
- Institute for Anatomy and Cell Biology, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23C, 17487, Greifswald, Germany
| | - Oliver von Bohlen Und Halbach
- Institute for Anatomy and Cell Biology, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23C, 17487, Greifswald, Germany.
| |
Collapse
|
10
|
Tai J, Guerra RM, Rogers SW, Fang Z, Muehlbauer LK, Shishkova E, Overmyer KA, Coon JJ, Pagliarini DJ. Hem25p is a mitochondrial IPP transporter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532620. [PMID: 36993473 PMCID: PMC10055127 DOI: 10.1101/2023.03.14.532620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Coenzyme Q (CoQ, ubiquinone) is an essential cellular cofactor comprised of a redox-active quinone head group and a long hydrophobic polyisoprene tail. How mitochondria access cytosolic isoprenoids for CoQ biosynthesis is a longstanding mystery. Here, via a combination of genetic screening, metabolic tracing, and targeted uptake assays, we reveal that Hem25p-a mitochondrial glycine transporter required for heme biosynthesis-doubles as an isopentenyl pyrophosphate (IPP) transporter in Saccharomyces cerevisiae. Mitochondria lacking Hem25p fail to efficiently incorporate IPP into early CoQ precursors, leading to loss of CoQ and turnover of CoQ biosynthetic proteins. Expression of Hem25p in Escherichia coli enables robust IPP uptake demonstrating that Hem25p is sufficient for IPP transport. Collectively, our work reveals that Hem25p drives the bulk of mitochondrial isoprenoid transport for CoQ biosynthesis in yeast.
Collapse
Affiliation(s)
- Jonathan Tai
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rachel M. Guerra
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sean W. Rogers
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zixiang Fang
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura K. Muehlbauer
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Evgenia Shishkova
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Katherine A. Overmyer
- Morgridge Institute for Research, Madison, WI 53715, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Joshua J. Coon
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - David J. Pagliarini
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
11
|
Fu Z, Kim H, Morse PT, Lu MJ, Hüttemann M, Cambronne XA, Zhang K, Zhang R. The mitochondrial NAD + transporter SLC25A51 is a fasting-induced gene affecting SIRT3 functions. Metabolism 2022; 135:155275. [PMID: 35932995 PMCID: PMC10080998 DOI: 10.1016/j.metabol.2022.155275] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Nicotinamide adenine dinucleotide (NAD) is a coenzyme central to metabolism and energy production. NAD+-dependent deacetylase sirtuin 3 (SIRT3) regulates the acetylation levels of mitochondrial proteins that are involved in mitochondrial homeostasis. Fasting up-regulates hepatic SIRT3 activity, which requires mitochondrial NAD+. What is the mechanism, then, to transport more NAD+ into mitochondria to sustain enhanced SIRT3 activity during fasting? OBJECTIVE SLC25A51 is a recently discovered mitochondrial NAD+ transporter. We tested the hypothesis that, during fasting, increased expression of SLC25A51 is needed for enhanced mitochondrial NAD+ uptake to sustain SIRT3 activity. Because the fasting-fed cycle and circadian rhythm are closely linked, we further tested the hypothesis that SLC25A51 is a circadian regulated gene. METHODS We examined Slc25a51 expression in the liver of fasted mice, and examined its circadian rhythm in wild-type mice and those with liver-specific deletion of the clock gene BMAL1 (LKO). We suppressed Slc25a51 expression in hepatocytes and the mouse liver using shRNA-mediated knockdown, and then examined mitochondrial NAD+ levels, SIRT3 activities, and acetylation levels of SIRT3 target proteins (IDH2 and ACADL). We measured mitochondrial oxygen consumption rate using Seahorse analysis in hepatocytes with reduced Slc25a51 expression. RESULTS We found that fasting induced the hepatic expression of Slc25a51, and its expression showed a circadian rhythm-like pattern that was disrupted in LKO mice. Reduced expression of Slc25a51 in hepatocytes decreased mitochondrial NAD+ levels and SIRT3 activity, reflected by increased acetylation of SIRT3 targets. Slc25a51 knockdown reduced the oxygen consumption rate in intact hepatocytes. Mice with reduced Slc25a51 expression in the liver manifested reduced hepatic mitochondrial NAD+ levels, hepatic steatosis and hypertriglyceridemia. CONCLUSIONS Slc25a51 is a fasting-induced gene that is needed for hepatic SIRT3 functions.
Collapse
Affiliation(s)
- Zhiyao Fu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Hyunbae Kim
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Paul T Morse
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Mu-Jie Lu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Xiaolu A Cambronne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Ren Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
12
|
Cercillieux A, Ciarlo E, Canto C. Balancing NAD + deficits with nicotinamide riboside: therapeutic possibilities and limitations. Cell Mol Life Sci 2022; 79:463. [PMID: 35918544 PMCID: PMC9345839 DOI: 10.1007/s00018-022-04499-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/20/2022] [Accepted: 07/20/2022] [Indexed: 12/21/2022]
Abstract
Alterations in cellular nicotinamide adenine dinucleotide (NAD+) levels have been observed in multiple lifestyle and age-related medical conditions. This has led to the hypothesis that dietary supplementation with NAD+ precursors, or vitamin B3s, could exert health benefits. Among the different molecules that can act as NAD+ precursors, Nicotinamide Riboside (NR) has gained most attention due to its success in alleviating and treating disease conditions at the pre-clinical level. However, the clinical outcomes for NR supplementation strategies have not yet met the expectations generated in mouse models. In this review we aim to provide a comprehensive view on NAD+ biology, what causes NAD+ deficits and the journey of NR from its discovery to its clinical development. We also discuss what are the current limitations in NR-based therapies and potential ways to overcome them. Overall, this review will not only provide tools to understand NAD+ biology and assess its changes in disease situations, but also to decide which NAD+ precursor could have the best therapeutic potential.
Collapse
Affiliation(s)
- Angelique Cercillieux
- Nestlé Institute of Health Sciences, Nestlé Research Ltd., EPFL Campus, Innovation Park, Building G, 1015, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Eleonora Ciarlo
- Nestlé Institute of Health Sciences, Nestlé Research Ltd., EPFL Campus, Innovation Park, Building G, 1015, Lausanne, Switzerland
| | - Carles Canto
- Nestlé Institute of Health Sciences, Nestlé Research Ltd., EPFL Campus, Innovation Park, Building G, 1015, Lausanne, Switzerland.
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|
13
|
Palmieri F, Monné M, Fiermonte G, Palmieri L. Mitochondrial transport and metabolism of the vitamin B-derived cofactors thiamine pyrophosphate, coenzyme A, FAD and NAD + , and related diseases: A review. IUBMB Life 2022; 74:592-617. [PMID: 35304818 PMCID: PMC9311062 DOI: 10.1002/iub.2612] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/19/2023]
Abstract
Multiple mitochondrial matrix enzymes playing key roles in metabolism require cofactors for their action. Due to the high impermeability of the mitochondrial inner membrane, these cofactors need to be synthesized within the mitochondria or be imported, themselves or one of their precursors, into the organelles. Transporters belonging to the protein family of mitochondrial carriers have been identified to transport the coenzymes: thiamine pyrophosphate, coenzyme A, FAD and NAD+ , which are all structurally similar to nucleotides and derived from different B-vitamins. These mitochondrial cofactors bind more or less tightly to their enzymes and, after having been involved in a specific reaction step, are regenerated, spontaneously or by other enzymes, to return to their active form, ready for the next catalysis round. Disease-causing mutations in the mitochondrial cofactor carrier genes compromise not only the transport reaction but also the activity of all mitochondrial enzymes using that particular cofactor and the metabolic pathways in which the cofactor-dependent enzymes are involved. The mitochondrial transport, metabolism and diseases of the cofactors thiamine pyrophosphate, coenzyme A, FAD and NAD+ are the focus of this review.
Collapse
Affiliation(s)
- Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)BariItaly
| | - Magnus Monné
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
- Department of SciencesUniversity of BasilicataPotenzaItaly
| | - Giuseppe Fiermonte
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)BariItaly
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)BariItaly
| |
Collapse
|
14
|
Ruszkiewicz JA, Bürkle A, Mangerich A. Fueling genome maintenance: On the versatile roles of NAD + in preserving DNA integrity. J Biol Chem 2022; 298:102037. [PMID: 35595095 PMCID: PMC9194868 DOI: 10.1016/j.jbc.2022.102037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
NAD+ is a versatile biomolecule acting as a master regulator and substrate in various cellular processes, including redox regulation, metabolism, and various signaling pathways. In this article, we concisely and critically review the role of NAD+ in mechanisms promoting genome maintenance. Numerous NAD+-dependent reactions are involved in the preservation of genome stability, the cellular DNA damage response, and other pathways regulating nucleic acid metabolism, such as gene expression and cell proliferation pathways. Of note, NAD+ serves as a substrate to ADP-ribosyltransferases, sirtuins, and potentially also eukaryotic DNA ligases, all of which regulate various aspects of DNA integrity, damage repair, and gene expression. Finally, we critically analyze recent developments in the field as well as discuss challenges associated with therapeutic actions intended to raise NAD+ levels.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Aswin Mangerich
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
15
|
Synthesis of Mixed Dinucleotides by Mechanochemistry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103229. [PMID: 35630705 PMCID: PMC9147584 DOI: 10.3390/molecules27103229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
Abstract
We report the synthesis of vitamin B1, B2, and B3 derived nucleotides and dinucleotides generated either through mechanochemical or solution phase chemistry. Under the explored conditions, adenosine and thiamine proved to be particularly amenable to milling conditions. Following optimization of the chemistry related to the formation pyrophosphate bonds, mixed dinucleotides of adenine and thiamine (vitamin B1), riboflavin (vitamin B2), nicotinamide riboside and 3-carboxamide 4-pyridone riboside (both vitamin B3 derivatives) were generated in good yields. Furthermore, we report an efficient synthesis of the MW+4 isotopologue of NAD+ for which deuterium incorporation is present on either side of the dinucleotidic linkage, poised for isotopic tracing experiments by mass spectrometry. Many of these mixed species are novel and present unexplored possibilities to simultaneously enhance or modulate cofactor transporters and enzymes of independent biosynthetic pathways.
Collapse
|
16
|
Kushwaha PP, Verma SS, Shankar E, Lin S, Gupta S. Role of solute carrier transporters SLC25A17 and SLC27A6 in acquired resistance to enzalutamide in castration‐resistant prostate cancer. Mol Carcinog 2021; 61:397-407. [DOI: 10.1002/mc.23383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/12/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Prem P. Kushwaha
- Department of Urology Case Western Reserve University Cleveland Ohio USA
- Institute of Urology University Hospitals Cleveland Medical Center Cleveland Ohio USA
| | - Shiv S. Verma
- Department of Urology Case Western Reserve University Cleveland Ohio USA
- Institute of Urology University Hospitals Cleveland Medical Center Cleveland Ohio USA
| | - Eswar Shankar
- Department of Urology Case Western Reserve University Cleveland Ohio USA
- Division of Medical Oncology The Ohio State University Columbus Ohio USA
| | - Spencer Lin
- College of Arts and Sciences Case Western Reserve University Cleveland Ohio USA
| | - Sanjay Gupta
- Department of Urology Case Western Reserve University Cleveland Ohio USA
- Institute of Urology University Hospitals Cleveland Medical Center Cleveland Ohio USA
- Department of Pharmacology Case Western Reserve University Cleveland Ohio USA
- Department of Pathology Case Western Reserve University Cleveland Ohio USA
- Department of Nutrition Case Western Reserve University Cleveland Ohio USA
| |
Collapse
|