1
|
Chen YJ, Chou CY, Er TK. Correlations of sST2 and Gal-3 with Cardiothoracic Ratio in Patients with Chronic Kidney Disease. Biomedicines 2024; 12:791. [PMID: 38672149 PMCID: PMC11048335 DOI: 10.3390/biomedicines12040791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic kidney disease (CKD) frequently correlates with cardiovascular complications. Soluble suppression of tumorigenicity 2 (sST2) and Galectin-3 (Gal-3) are emerging as cardiac markers with potential relevance in cardiovascular risk prediction. The cardiothoracic ratio (CTR), a metric easily obtainable from chest radiographs, has traditionally been used to assess cardiac size and the potential for cardiomegaly. Understanding the correlation between these cardiac markers and the cardiothoracic ratio (CTR) could provide valuable insights into the cardiovascular prognosis of CKD patients. This study aimed to explore the relationship between sST2, Gal-3, and the CTR in individuals with CKD. Plasma concentrations of sST2 and Gal-3 were assessed in a cohort of 123 CKD patients by enzyme-linked immunosorbent assay (ELISA). On a posterior-to-anterior chest X-ray view, the CTR was determined by comparing the widths of the heart to that of the thorax. The mean concentration of sST2 in the study participants ranged from 775.4 to 4475.6 pg/mL, and the mean concentration of Gal-3 ranged from 4.7 to 9796.0 ng/mL. Significant positive correlations were observed between sST2 and the CTR (r = 0.291, p < 0.001) and between Gal-3 and the CTR (r = 0.230, p < 0.01). Our findings indicate that elevated levels of sST2 and Gal-3 are associated with an increased CTR in CKD patients. This relationship may enable better cardiovascular risk evaluation for CKD patients. Further studies are warranted to explore the clinical implications of these associations.
Collapse
Affiliation(s)
- Ying-Ju Chen
- Division of Laboratory Medicine, Asia University Hospital, Asia University, Taichung 41354, Taiwan
| | - Che-Yi Chou
- Division of Nephrology, Asia University, Taichung 41354, Taiwan
| | - Tze-Kiong Er
- Division of Laboratory Medicine, Asia University Hospital, Asia University, Taichung 41354, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan
- Department of Nursing, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
2
|
Nikitopoulou I, Vassiliou AG, Athanasiou N, Jahaj E, Akinosoglou K, Dimopoulou I, Orfanos SE, Dimakopoulou V, Schinas G, Tzouvelekis A, Aidinis V, Kotanidou A. Increased Levels of Galectin-3 in Critical COVID-19. Int J Mol Sci 2023; 24:15833. [PMID: 37958814 PMCID: PMC10650562 DOI: 10.3390/ijms242115833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Severe COVID-19 is related to hyperinflammation and multiple organ injury, including respiratory failure, thus requiring intensive care unit (ICU) admission. Galectin-3, a carbohydrate-binding protein exhibiting pleiotropic effects, has been previously recognized to participate in inflammation, the immune response to infections and fibrosis. The aim of this study was to evaluate the relationship between galectin-3 and the clinical severity of COVID-19, as well as assess the prognostic accuracy of galectin-3 for the probability of ICU mortality. The study included 235 COVID-19 patients with active disease, treated in two different Greek hospitals in total. Our results showed that median galectin-3 serum levels on admission were significantly increased in critical COVID-19 patients (7.2 ng/mL), as compared to the median levels of patients with less severe disease (2.9 ng/mL, p = 0.003). Galectin-3 levels of the non-survivors hospitalized in the ICU were significantly higher than those of the survivors (median 9.1 ng/mL versus 5.8 ng/mL, p = 0.001). The prognostic accuracy of galectin-3 for the probability of ICU mortality was studied with a receiver operating characteristic (ROC) curve and a multivariate analysis further demonstrated that galectin-3 concentration at hospital admission could be assumed as an independent risk factor associated with ICU mortality. Our results were validated with galectin-3 measurements in a second patient cohort from a different Greek university hospital. Our results, apart from strongly confirming and advancing previous knowledge with two patient cohorts, explore the possibility of predicting ICU mortality, which could provide useful information to clinicians. Therefore, galectin-3 seems to establish its involvement in the prognosis of hospitalized COVID-19 patients, suggesting that it could serve as a promising biomarker in critical COVID-19.
Collapse
Affiliation(s)
- Ioanna Nikitopoulou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (I.N.); (A.G.V.); (N.A.); (E.J.); (I.D.); (S.E.O.)
| | - Alice G. Vassiliou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (I.N.); (A.G.V.); (N.A.); (E.J.); (I.D.); (S.E.O.)
| | - Nikolaos Athanasiou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (I.N.); (A.G.V.); (N.A.); (E.J.); (I.D.); (S.E.O.)
| | - Edison Jahaj
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (I.N.); (A.G.V.); (N.A.); (E.J.); (I.D.); (S.E.O.)
| | - Karolina Akinosoglou
- Division of Internal Medicine, University General Hospital of Patras, 26504 Patras, Greece; (K.A.); (V.D.); (G.S.)
| | - Ioanna Dimopoulou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (I.N.); (A.G.V.); (N.A.); (E.J.); (I.D.); (S.E.O.)
| | - Stylianos E. Orfanos
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (I.N.); (A.G.V.); (N.A.); (E.J.); (I.D.); (S.E.O.)
| | - Vasiliki Dimakopoulou
- Division of Internal Medicine, University General Hospital of Patras, 26504 Patras, Greece; (K.A.); (V.D.); (G.S.)
| | - Georgios Schinas
- Division of Internal Medicine, University General Hospital of Patras, 26504 Patras, Greece; (K.A.); (V.D.); (G.S.)
| | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, University General Hospital of Patras, 26504 Patras, Greece;
| | - Vassilis Aidinis
- Institute of Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece;
| | - Anastasia Kotanidou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (I.N.); (A.G.V.); (N.A.); (E.J.); (I.D.); (S.E.O.)
| |
Collapse
|
3
|
Ali H, Naseem A, Siddiqui ZI. SARS-CoV-2 Syncytium under the Radar: Molecular Insights of the Spike-Induced Syncytia and Potential Strategies to Limit SARS-CoV-2 Replication. J Clin Med 2023; 12:6079. [PMID: 37763019 PMCID: PMC10531702 DOI: 10.3390/jcm12186079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
SARS-CoV-2 infection induces non-physiological syncytia when its spike fusogenic protein on the surface of the host cells interacts with the ACE2 receptor on adjacent cells. Spike-induced syncytia are beneficial for virus replication, transmission, and immune evasion, and contribute to the progression of COVID-19. In this review, we highlight the properties of viral fusion proteins, mainly the SARS-CoV-2 spike, and the involvement of the host factors in the fusion process. We also highlight the possible use of anti-fusogenic factors as an antiviral for the development of therapeutics against newly emerging SARS-CoV-2 variants and how the fusogenic property of the spike could be exploited for biomedical applications.
Collapse
Affiliation(s)
- Hashim Ali
- Department of Pathology, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0QQ, UK
| | - Asma Naseem
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1DZ, UK
| | - Zaheenul Islam Siddiqui
- Diabetes and Obesity Research Center, NYU Grossman Long Island School of Medicine, New York, NY 11501, USA
| |
Collapse
|
4
|
Apostolo D, Ferreira LL, Di Tizio A, Ruaro B, Patrucco F, Bellan M. A Review: The Potential Involvement of Growth Arrest-Specific 6 and Its Receptors in the Pathogenesis of Lung Damage and in Coronavirus Disease 2019. Microorganisms 2023; 11:2038. [PMID: 37630598 PMCID: PMC10459962 DOI: 10.3390/microorganisms11082038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The tyrosine kinase receptors of the TAM family-Tyro3, Axl and Mer-and their main ligand Gas6 (growth arrest-specific 6) have been implicated in several human diseases, having a particularly important role in the regulation of innate immunity and inflammatory response. The Gas6/TAM system is involved in the recognition of apoptotic debris by immune cells and this mechanism has been exploited by viruses for cell entry and infection. Coronavirus disease 2019 (COVID-19) is a multi-systemic disease, but the lungs are particularly affected during the acute phase and some patients may suffer persistent lung damage. Among the manifestations of the disease, fibrotic abnormalities have been observed among the survivors of COVID-19. The mechanisms of COVID-related fibrosis remain elusive, even though some parallels may be drawn with other fibrotic diseases, such as idiopathic pulmonary fibrosis. Due to the still limited number of scientific studies addressing this question, in this review we aimed to integrate the current knowledge of the Gas6/TAM axis with the pathophysiological mechanisms underlying COVID-19, with emphasis on the development of a fibrotic phenotype.
Collapse
Affiliation(s)
- Daria Apostolo
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
| | - Luciana L. Ferreira
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
| | - Alice Di Tizio
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
- Respiratory Diseases Unit, Medical Department, AOU Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Barbara Ruaro
- Pulmonology Department, University of Trieste, 34128 Trieste, Italy;
| | - Filippo Patrucco
- Respiratory Diseases Unit, Medical Department, AOU Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Mattia Bellan
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (L.L.F.); (A.D.T.); (M.B.)
- Division of Internal Medicine, Medical Department, AOU Maggiore della Carità Hospital, 28100 Novara, Italy
| |
Collapse
|
5
|
Stojanovic BS, Stojanovic B, Milovanovic J, Arsenijević A, Dimitrijevic Stojanovic M, Arsenijevic N, Milovanovic M. The Pivotal Role of Galectin-3 in Viral Infection: A Multifaceted Player in Host-Pathogen Interactions. Int J Mol Sci 2023; 24:ijms24119617. [PMID: 37298569 DOI: 10.3390/ijms24119617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Galectin-3 (Gal-3), a beta-galactoside-binding lectin, plays a pivotal role in various cellular processes, including immune responses, inflammation, and cancer progression. This comprehensive review aims to elucidate the multifaceted functions of Gal-3, starting with its crucial involvement in viral entry through facilitating viral attachment and catalyzing internalization. Furthermore, Gal-3 assumes significant roles in modulating immune responses, encompassing the activation and recruitment of immune cells, regulation of immune signaling pathways, and orchestration of cellular processes such as apoptosis and autophagy. The impact of Gal-3 extends to the viral life cycle, encompassing critical phases such as replication, assembly, and release. Notably, Gal-3 also contributes to viral pathogenesis, demonstrating involvement in tissue damage, inflammation, and viral persistence and latency elements. A detailed examination of specific viral diseases, including SARS-CoV-2, HIV, and influenza A, underscores the intricate role of Gal-3 in modulating immune responses and facilitating viral adherence and entry. Moreover, the potential of Gal-3 as a biomarker for disease severity, particularly in COVID-19, is considered. Gaining further insight into the mechanisms and roles of Gal-3 in these infections could pave the way for the development of innovative treatment and prevention options for a wide range of viral diseases.
Collapse
Affiliation(s)
- Bojana S Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bojan Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Histology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Aleksandar Arsenijević
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Milica Dimitrijevic Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
6
|
Grewal T, Buechler C. Adipokines as Diagnostic and Prognostic Markers for the Severity of COVID-19. Biomedicines 2023; 11:1302. [PMID: 37238973 PMCID: PMC10215701 DOI: 10.3390/biomedicines11051302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Accumulating evidence implicates obesity as a risk factor for increased severity of disease outcomes in patients infected with severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Obesity is associated with adipose tissue dysfunction, which not only predisposes individuals to metabolic complications, but also substantially contributes to low-grade systemic inflammation, altered immune cell composition, and compromised immune function. This seems to impact the susceptibility and outcome of diseases caused by viruses, as obese people appear more vulnerable to developing infections and they recover later from infectious diseases than normal-weight individuals. Based on these findings, increased efforts to identify suitable diagnostic and prognostic markers in obese Coronavirus disease 2019 (COVID-19) patients to predict disease outcomes have been made. This includes the analysis of cytokines secreted from adipose tissues (adipokines), which have multiple regulatory functions in the body; for instance, modulating insulin sensitivity, blood pressure, lipid metabolism, appetite, and fertility. Most relevant in the context of viral infections, adipokines also influence the immune cell number, with consequences for overall immune cell activity and function. Hence, the analysis of the circulating levels of diverse adipokines in patients infected with SARS-CoV-2 have been considered to reveal diagnostic and prognostic COVID-19 markers. This review article summarizes the findings aimed to correlate the circulating levels of adipokines with progression and disease outcomes of COVID-19. Several studies provided insights on chemerin, adiponectin, leptin, resistin, and galectin-3 levels in SARS-CoV-2-infected patients, while limited information is yet available on the adipokines apelin and visfatin in COVID-19. Altogether, current evidence points at circulating galectin-3 and resistin levels being of diagnostic and prognostic value in COVID-19 disease.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany
| |
Collapse
|
7
|
Puccini M, Jakobs K, Reinshagen L, Friebel J, Schencke PA, Ghanbari E, Landmesser U, Haghikia A, Kränkel N, Rauch U. Galectin-3 as a Marker for Increased Thrombogenicity in COVID-19. Int J Mol Sci 2023; 24:ijms24097683. [PMID: 37175392 PMCID: PMC10178107 DOI: 10.3390/ijms24097683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Galectin-3 is a beta-galactoside-binding lectin involved in inflammation and lung fibrosis and postulated to enhance thrombosis. In COVID-19, it is considered to be a prognostic marker of severity. The aim of this study was to evaluate whether galectin-3 is associated with thrombogenicity in COVID-19. Patients with moderate-to-severe COVID-19 (COVpos; n = 55) and patients with acute respiratory diseases, but without COVID-19 (COVneg; n = 35), were included in the study. We measured the amount of galectin-3, as well as other platelet and coagulation markers, and correlated galectin-3 levels with these markers of thrombogenicity and with the SOFA Score values. We found that galectin-3 levels, as well as von Willebrand Factor (vWF), antithrombin and tissue plasminogen activator levels, were higher in the COVpos than they were in the COVneg cohort. Galectin-3 correlated positively with vWF, antithrombin and D-dimer in the COVpos cohort, but not in the COVneg cohort. Moreover, galactin-3 correlated also with clinical disease severity, as measured by the SOFA Score. In patients with acute respiratory diseases, galectin-3 can be considered as a marker not only for disease severity, but also for increased hypercoagulability. Whether galectin-3 might be a useful therapeutic target in COVID-19 needs to be assessed in future studies.
Collapse
Affiliation(s)
- Marianna Puccini
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
| | - Kai Jakobs
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
| | - Leander Reinshagen
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
| | - Julian Friebel
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
| | - Philipp-Alexander Schencke
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
| | - Emily Ghanbari
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
| | - Ulf Landmesser
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
| | - Arash Haghikia
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
| | - Nicolle Kränkel
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
| | - Ursula Rauch
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
| |
Collapse
|
8
|
Behnoush AH, Khalaji A, Alemohammad SY, Kalantari A, Cannavo A, Dimitroff CJ. Galectins can serve as biomarkers in COVID-19: A comprehensive systematic review and meta-analysis. Front Immunol 2023; 14:1127247. [PMID: 36923399 PMCID: PMC10009778 DOI: 10.3389/fimmu.2023.1127247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Galectins are an eleven-member class of lectins in humans that function as immune response mediators and aberrancies in their expression are commonly associated with immunological diseases. Several studies have focused on galectins as they may represent an important biomarker and a therapeutic target in the fight against COVID-19. This systematic review and meta-analysis examined the usefulness of clinical assessment of circulating galectin levels in patients with COVID-19. METHODS International databases including PubMed, Scopus, Web of Science, and Embase were systematically used as data sources for our analyses. The random-effect model was implemented to calculate the standardized mean difference (SMD) and a 95% confidence interval (CI). RESULTS A total of 18 studies, comprising 2,765 individuals, were identified and used in our analyses. We found that Gal-3 is the most widely investigated galectin in COVID-19. Three studies reported significantly higher Gal-1 levels in COVID-19 patients. Meta-analysis revealed that patients with COVID-19 had statistically higher levels of Gal-3 compared with healthy controls (SMD 0.53, 95% CI 0.10 to 0.96, P=0.02). However, there was no significant difference between severe and non-severe cases (SMD 0.45, 95% CI -0.17 to 1.07, P=0.15). While one study supports lower levels of Gal-8 in COVID-19, Gal-9 was measured to be higher in patients and more severe cases. CONCLUSION Our study supports Gal-3 as a valuable non-invasive biomarker for the diagnosis and/or prognosis of COVID-19. Moreover, based on the evidence provided here, more studies are needed to confirm a similar diagnostic and prognostic role for Gal-1, -8, and -9.
Collapse
Affiliation(s)
- Amir Hossein Behnoush
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Non–Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Khalaji
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Non–Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Yasaman Alemohammad
- Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States
| | - Amirali Kalantari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alessandro Cannavo
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Charles J. Dimitroff
- Department of Translational Medicine, Translational Glycobiology Institute at Florida International University, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
9
|
The Prognostic Value of Pentraxin-3 in COVID-19 Patients: A Systematic Review and Meta-Analysis of Mortality Incidence. Int J Mol Sci 2023; 24:ijms24043537. [PMID: 36834949 PMCID: PMC9958638 DOI: 10.3390/ijms24043537] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Over the last three years, humanity has been facing one of the most serious health emergencies due to the global spread of Coronavirus disease (COVID-19). In this scenario, the research of reliable biomarkers of mortality from COVID-19 represents a primary objective. Pentraxin 3 (PTX3), a highly conserved protein of innate immunity, seems to be associated with a worse outcome of the disease. Based on the above, this systematic review and meta-analysis evaluated the prognostic potential of PTX3 in COVID-19 disease. We included 12 clinical studies evaluating PTX3 in COVID-19 patients. From our research, we found increased PTX3 levels compared to healthy subjects, and notably, PTX3 was even more augmented in severe COVID-19 rather than non-severe cases. Moreover, we performed a meta-analysis to establish if there were differences between ICU and non-ICU COVID-19 patients in PTX3-related death. We combined 5 studies for a total of 543 ICU vs. 515 non-ICU patients. We found high significative PTX3-related death in ICU COVID-19 hospitalized individuals (184 out of 543) compared to non-ICU (37 out of 515), with an overall effect OR: 11.30 [2.00, 63.73]; p = 0.006. In conclusion, we probed PTX3 as a reliable marker of poor outcomes after COVID-19 infection as well as a predictor of hospitalized patients' stratification.
Collapse
|
10
|
Galectin-3 as an important prognostic marker for COVID-19 severity. Sci Rep 2023; 13:1460. [PMID: 36702907 PMCID: PMC9878495 DOI: 10.1038/s41598-023-28797-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Galectin-3 (Gal-3), multifunctional protein plays important roles in inflammatory response, infection and fibrosis. The goal of study was to determine the association of Gal-3, immune response, clinical, biochemical, and radiographic findings with COVID-19 severity. Study included 280 COVID-19 patients classified according to disease severity into mild, moderate, severe and critical group. Cytokines, clinical, biochemical, radiographic data and peripheral blood immune cell make up were analyzed. Patients in critical group had significantly higher serum level of Gal-3, IL-1β, TNF-α, IL-12, IL-10 compared to the patients in less severe stages of disease. Strong positive correlation was detected between Gal-3 and IL-1β, moderate positive correlation between Gal-3, TNF-α and IL-12, moderate negative correlation between Gal-3, IL-10/IL-1β and IL-10/TNF-α. Moderate positive correlation noted between Gal-3 and urea, D dimer, CXR findings. Strong negative correlation detected between Gal-3 and p02, Sa02, and moderate negative correlation between Gal-3, lymphocyte and monocyte percentage. In the peripheral blood of patients with more severe stages of COVID-19 we detected significantly increased percentages of CD56- CD3+TNF-α+T cells and CD56- CD3+Gal-3+T cells and increased expression of CCR5 in PBMCs. Our results predict Gal-3 as an important marker for critical stage of COVID-19. Higher expression of Gal-3, TNF-α and CCR5 on T cells implicate on promoting inflammation and more severe form of disease.
Collapse
|
11
|
Özcan S, Dönmez E, Yavuz ST, Ziyrek M, İnce O, Küçük H, Taşdemir ZA, Yılmaz İ, Varol S, Şahin İ, Okuyan E. Prognostic significance of serum galectin-3 in hospitalized patients with COVID-19. Cytokine 2022; 158:155970. [PMID: 35917725 PMCID: PMC9329148 DOI: 10.1016/j.cyto.2022.155970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/07/2022] [Accepted: 07/16/2022] [Indexed: 11/25/2022]
Abstract
Background Methods Results Conclusion
Collapse
|
12
|
Lolobali MC, Widnyana IMG, Wulansari NMA, Wibhuti IBR, Wiryana M, Sedono R, Heriwardito A. Contributing Factors to Increased Left Ventricular End-Diastolic Volume in COVID-19 ICU Patients in Sanglah Hospital: A Study on Galectin-3. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND: Coronavirus disease 2019 (COVID-19) is a respiratory disease that has become the largest pandemic and also could put the heart at risk of dysfunction. Galectin-3 is involved in the inflammatory process that continues with remodeling and eventually fibrosis. Using galectin-3 examination, we could predict the possible worsening of heart function and evaluate data on influencing factors for increased left ventricular end-diastolic volume (LVEDV) which could later progress to heart failure.
METHODS: This is an observational prospective analytic study in the COVID-19 ICU of Sanglah Hospital, Bali, Indonesia. The study was conducted from June to October 2021. All research subjects had their blood samples taken for galectin-3 levels examination using enzyme-linked immunosorbent assay (ELISA). Subjects were also evaluated for left ventricular end-diastolic volume (LVEDV) with echocardiography, SOFA scores, and troponin I levels. Subjects were treated with COVID-19 standard protocol established by the Ministry of Health. After 72 h post-admission, subjects were re-examined for galectin-3 levels and LVEDV. Data were analyzed using STATA™.
RESULTS: A total of 45 research subjects were analyzed. Bivariate analysis of the difference of galectin-3 and LVEDV was shown to be insignificant (r = 0.08), no correlation was found between galectin-3 level and LVEDV on ICU admission (r = 0.191), and no correlation found between galectin-3 level and LVEDV after 72 h of hospitalization (r=0.197). Multivariate analysis also showed that none of the variables, namely, difference of galectin-3 level, age, gender, troponin I, SOFA, and Charlson scores had statistically significant correlation with LVEDV (p < 0.05).
CONCLUSION: No significant correlation was found between galectin-3 level and an increase in LVEDV.
Collapse
|
13
|
Galectins: Their Network and Roles in Infection/Immunity/Tumor Growth Control 2021. Biomolecules 2022; 12:biom12091255. [PMID: 36139094 PMCID: PMC9496472 DOI: 10.3390/biom12091255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
|
14
|
Balta S, Balta I. COVID-19 and Inflammatory Markers. Curr Vasc Pharmacol 2022; 20:326-332. [PMID: 35379133 DOI: 10.2174/1570161120666220404200205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 01/25/2023]
Abstract
Coronavirus disease-2019 (COVID-19) causes mild illness to serious infection with lung involvement, thrombosis, and other complications potentially resulting in fatal outcomes. Recognised inflammatory biomarkers play important roles in managing patients with COVID-19; for example, diagnosis, follow-up, assessment of treatment response, and risk stratification. Inflammatory markers in COVID-19 disease were analysed in two categories. Well-known inflammatory markers include complete blood count, C-reactive protein, albumin, cytokines, and erythrocyte sedimentation rate. Asymmetric dimethylarginine, endocan, pentraxin 3, serum amyloid A, soluble urokinase plasminogen activator receptor, total oxidant status and total antioxidant status, and galectin-3 are considered among the emerging inflammatory markers. This brief narrative review assesses the relationship between these inflammatory markers and COVID-19 infection.
Collapse
Affiliation(s)
- Sevket Balta
- Department of Cardiology, Hayat Hospital, Malatya, Turkey
| | - Ilknur Balta
- Department of Dermatology, Malatya Training and Research Hospital, Malatya, Turkey
| |
Collapse
|
15
|
Gal-3BP in Viral Infections: An Emerging Role in Severe Acute Respiratory Syndrome Coronavirus 2. Int J Mol Sci 2022; 23:ijms23137314. [PMID: 35806317 PMCID: PMC9266551 DOI: 10.3390/ijms23137314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
Galectin-3 binding protein (Gal-3BP) is a multifunctional glycoprotein involved in cell–cell and cell–matrix interactions known to be upregulated in cancer and various viral infections, including HIV-1, HCV, and SARS-CoV-2, with a key role in regulating the antiviral immune response. Studies have identified a direct correlation between circulating levels of Gal-3BP and the severity of disease and/or disease progression for some viral infections, including SARS-CoV-2, suggesting a role of Gal-3BP in these processes. Due to Gal-3BP’s complex biology, the molecular mechanisms underlying its role in viral diseases have been only partially clarified. Gal-3BP induces the expression of interferons (IFNs) and proinflammatory cytokines, including interleukin-6 (IL-6), mainly interacting with galectin-3, targeting the TNF receptor-associated factors (TRAF-6 and TRAF-3) complex, thus having a putative role in the modulation of TGF-β signaling. In addition, an antiviral activity of Gal-3BP has been ascribed to a direct interaction of the protein with virus components. In this review, we explored the role of Gal-3BP in viral infections and the relationship between Gal-3BP upregulation and disease severity and progression, mainly focusing on SARS-CoV-2. Augmented knowledge of Gal-3BP’s role in virus infections can be useful to evaluate its possible use as a prognostic biomarker and as a putative target to block or attenuate severe disease.
Collapse
|
16
|
Al-Mterin MA, Alsalman A, Elkord E. Inhibitory Immune Checkpoint Receptors and Ligands as Prognostic Biomarkers in COVID-19 Patients. Front Immunol 2022; 13:870283. [PMID: 35432324 PMCID: PMC9008255 DOI: 10.3389/fimmu.2022.870283] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2. During T-cell activation, the immune system uses different checkpoint pathways to maintain co-inhibitory and co-stimulatory signals. In COVID-19, expression of immune checkpoints (ICs) is one of the most important manifestations, in addition to lymphopenia and inflammatory cytokines, contributing to worse clinical outcomes. There is a controversy whether upregulation of ICs in COVID-19 patients might lead to T-cell exhaustion or activation. This review summarizes the available studies that investigated IC receptors and ligands in COVID-19 patients, as well as their effect on T-cell function. Several IC receptors and ligands, including CTLA-4, BTLA, TIM-3, VISTA, LAG-3, TIGIT, PD-1, CD160, 2B4, NKG2A, Galectin-9, Galectin-3, PD-L1, PD-L2, LSECtin, and CD112, were upregulated in COVID-19 patients. Based on the available studies, there is a possible relationship between disease severity and increased expression of IC receptors and ligands. Overall, the upregulation of some ICs could be used as a prognostic biomarker for disease severity.
Collapse
Affiliation(s)
| | - Alhasan Alsalman
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Eyad Elkord
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom
| |
Collapse
|
17
|
Pedrosa LDF, Raz A, Fabi JP. The Complex Biological Effects of Pectin: Galectin-3 Targeting as Potential Human Health Improvement? Biomolecules 2022; 12:289. [PMID: 35204790 PMCID: PMC8961642 DOI: 10.3390/biom12020289] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Galectin-3 is the only chimeric representative of the galectin family. Although galectin-3 has ubiquitous regulatory and physiological effects, there is a great number of pathological environments where galectin-3 cooperatively participates. Pectin is composed of different chemical structures, such as homogalacturonans, rhamnogalacturonans, and side chains. The study of pectin's major structural aspects is fundamental to predicting the impact of pectin on human health, especially regarding distinct molecular modulation. One of the explored pectin's biological activities is the possible galectin-3 protein regulation. The present review focuses on revealing the structure/function relationship of pectins, their fragments, and their biological effects. The discussion highlighted by this review shows different effects described within in vitro and in vivo experimental models, with interesting and sometimes contradictory results, especially regarding galectin-3 interaction. The review demonstrates that pectins are promissory food-derived molecules for different bioactive functions. However, galectin-3 inhibition by pectin had been stated in literature before, although it is not a fully understood, experimentally convincing, and commonly agreed issue. It is demonstrated that more studies focusing on structural analysis and its relation to the observed beneficial effects, as well as substantial propositions of cause and effect alongside robust data, are needed for different pectin molecules' interactions with galectin-3.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508000, SP, Brazil;
| | - Avraham Raz
- Department of Oncology and Pathology, School of Medicine, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA;
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508000, SP, Brazil;
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo 05508080, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508080, SP, Brazil
| |
Collapse
|
18
|
The Diagnostic and Therapeutic Potential of Galectin-3 in Cardiovascular Diseases. Biomolecules 2021; 12:biom12010046. [PMID: 35053194 PMCID: PMC8774137 DOI: 10.3390/biom12010046] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 12/25/2022] Open
Abstract
Galectin-3 plays a prominent role in chronic inflammation and has been implicated in the development of many disease conditions, including heart disease. Galectin-3, a regulatory protein, is elevated in both acute and chronic heart failure and is involved in the inflammatory pathway after injury leading to myocardial tissue remodelling. We discussed the potential utility of galectin-3 as a diagnostic and disease severity/prognostic biomarker in different cardio/cerebrovascular diseases, such as acute ischemic stroke, acute coronary syndromes, heart failure and arrhythmogenic cardiomyopathy. Over the last decade there has been a marked increase in the understanding the role of galectin-3 in myocardial fibrosis and inflammation and as a therapeutic target for the treatment of heart failure and myocardial infarction.
Collapse
|