1
|
Çakır F, Ateşoğlu Ş, Müderrisoğlu ZR, Demirel F, Akbaş F, Tokalı FS, Şenol H. Targeting Lung Cancer With Carvacrol-Triazole-Arylidene Hydrazide Hybrids: In Vitro and In Silico Cytotoxicity Assessments. Chem Biodivers 2025:e202402963. [PMID: 39840653 DOI: 10.1002/cbdv.202402963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/23/2025]
Abstract
In this study, a series of 16 arylidene hydrazide derivatives (7a-7p), hybridized with the natural product carvacrol, were successfully synthesized starting from anthranilic acid methyl ester. The cytotoxic effects of these compounds were examined against two different cell lines, A549 and BEAS-2B. Additionally, in silico studies were conducted to investigate the ligand-protein binding modes and their stabilities. Lastly, the predicted absorption, distribution, metabolism, and excretion (ADME) properties were also explored. The compounds' structures were confirmed through meticulous NMR and MS spectral analyses. Biological assays indicated notable cytotoxic effects against human lung cancer (A549) and non-tumorigenic lung epithelial (BEAS-2B) cell lines, with compounds 7j, 7k, and 7l demonstrating high selectivity indices (SIs) and low IC50 values against A549 cells, signifying potent selective anticancer activity. Molecular docking and molecular dynamics (MD) simulations identified key binding interactions of these compounds with epidermal growth factor receptor (EGFR) and BRAF proteins, emphasizing the importance of residues such as Lys-745 and Phe-856 in EGFR and Lys-483 in BRAF. Stability of these complexes was confirmed through 100 ns MD simulations. ADME analysis revealed favorable pharmacokinetic properties for the prominent compounds, particularly 7k. These results suggest that arylidene hydrazide derivatives, especially 7k, are promising selective anticancer agents with potential for further development.
Collapse
Affiliation(s)
- Furkan Çakır
- Department of Pharmaceutical Chemistry, Institute of Health Sciences, Istanbul University, Istanbul, Turkey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Şeyma Ateşoğlu
- Department of Biotechnology, Institute of Health Sciences, Bezmialem Vakif University, Istanbul, Turkey
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | | | - Firdevs Demirel
- Department of Pharmacognosy, Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Fahri Akbaş
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Feyzi Sinan Tokalı
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, Kars, Turkey
| | - Halil Şenol
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
2
|
S N, R B, Kulkarni NV, Patil A, Arakera SB, John S. Synthesis and characterization of novel uranyl clusters supported by bis(pyrazolyl) methane ligands: biomimetic catalytic oxidation, BSA protein interaction and cytotoxicity studies. RSC Adv 2024; 14:32802-32817. [PMID: 39429924 PMCID: PMC11484172 DOI: 10.1039/d4ra06347c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024] Open
Abstract
Two novel uranyl complexes were synthesized using bis-pyrazolyl methane ligands. The complexes were characterized by several spectroscopic techniques, including UV-Vis, IR, NMR, mass spectrometry, fluorescence, electrochemical, and thermogravimetric analysis. The solid-state structure of the complex C1 was determined with the help of single-crystal X-ray diffraction studies. The complexes C1 and C2 efficiently catalyse the oxidation of 3,5-di-tert-butyl catechol and 2-aminophenol in the atmospheric air, imitating the catalytic activity of the catechol oxidase and phenoxazinone synthase enzymes. The kinetic parameters and the catalytic efficiency (K cat/K M) of the reactions were calculated. Formation of organic free radicals in the catalytic reactions was confirmed by EPR spectroscopy. The interaction of these complexes with the protein, bovine serum albumin, was investigated by using UV-Vis and fluorescence spectral analysis. The cytotoxicity of the complexes against MDAMB-231 and A549 cell lines was investigated, and IC50 values were determined.
Collapse
Affiliation(s)
- Nakul S
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525 Kollam Kerala India
| | - Bhagavathish R
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525 Kollam Kerala India
| | - Naveen V Kulkarni
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525 Kollam Kerala India
| | - Ajeetkumar Patil
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education (MAHE) Manipal 576 104 Karnataka India
| | - Suresh B Arakera
- Department of Applied Genetics, Karnatak University Pavate Nagar Dharwad -580003 Karnataka India
| | - Sam John
- Research and Post Graduate Department of Chemistry, St. Berchmans College Changanassery Kottayam 686101 Kerala India
| |
Collapse
|
3
|
Abdellattif MH, Assy MG, Elfarargy A, Ramadan F, Elgendy MS, Emwas AHM, Jaremko M, Shehab WS. Novel candidates synthesis of indenopyrazole, indenoazine and indenothiophene, with anticancer and in silico studies. Future Med Chem 2024; 16:1429-1447. [PMID: 39190476 DOI: 10.1080/17568919.2024.2351350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/29/2024] [Indexed: 08/28/2024] Open
Abstract
Aim: The indandione nucleus, is one of the most amazing nuclei in medicinal chemistry, is used to design new derivatives.Methods & materials: Novel indandione derivatives are prepared with different electrophilic and nucleophilic reagents to yield 3, 4, 8, 11, 14, 16, 19, 20, 21, 22 and 23. Compounds 8, 11, 16, 20 and 23 are investigated against OVCAR-3 and HeLa, using LLC-MK2 and cis-Pt as references. in silico and spectral studies were analyzed for the selected compounds.Results: Compounds 20 and 23 at 100 ns were the most potent compounds, so molecular dynamics studies were performed.Conclusion: Compound 23 was the most active toward the HeLa cervical cell line, and compound 20 was the most active toward the Ovcar-3 cell line.
Collapse
Affiliation(s)
- Magda H Abdellattif
- Chemistry Department, College of Sciences, University College of Taraba, Taif University, P. O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mohammed Gomma Assy
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Ahmed Elfarargy
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Fawzy Ramadan
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Marwa S Elgendy
- Department of Chemistry, Faculty of Science, Al-Azhar University (Girls), Cairo, Egypt
| | - Abdul-Hamid M Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Wesam S Shehab
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
4
|
Presenjit, Chaturvedi S, Singh A, Gautam D, Singh K, Mishra AK. An Insight into the Effect of Schiff Base and their d and f Block Metal Complexes on Various Cancer Cell Lines as Anticancer Agents: A Review. Anticancer Agents Med Chem 2024; 24:488-503. [PMID: 38279753 DOI: 10.2174/0118715206280314231201111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 01/28/2024]
Abstract
Over the last few decades, an alarming rise in the percentage of individuals with cancer and those with multi-resistant illnesses has forced researchers to explore possibilities for novel therapeutic approaches. Numerous medications currently exist to treat various disorders, and the development of small molecules as anticancer agents has considerable potential. However, the widespread prevalence of resistance to multiple drugs in cancer indicates that it is necessary to discover novel and promising compounds with ideal characteristics that could overcome the multidrug resistance issue. The utilisation of metallo-drugs has served as a productive anticancer chemotherapeutic method, and this approach may be implemented for combating multi-resistant tumours more successfully. Schiff bases have been receiving a lot of attention as a group of compounds due to their adaptable metal chelating abilities, innate biologic properties, and versatility to tweak the structure to optimise it for a specific biological purpose. The biological relevance of Schiff base and related complexes, notably their anticancer effects, has increased in their popularity as bio-inorganic chemistry has progressed. As a result of learning about Schiff bases antitumor efficacy against multiple cancer cell lines and their complexes, researchers are motivated to develop novel, side-effect-free anticancer treatments. According to study reports from the past ten years, we are still seeking a powerful anticancer contender. This study highlights the potential of Schiff bases, a broad class of chemical molecules, as potent anticancer agents. In combination with other anticancer strategies, they enhance the efficacy of treatment by elevating the cytotoxicity of chemotherapy, surmounting drug resistance, and promoting targeted therapy. Schiff bases also cause cancer cell DNA repair, improve immunotherapy, prevent angiogenesis, cause apoptosis, and lessen the side effects of chemotherapy. The present review explores the development of potential Schiff base and their d and f block metal complexes as anticancer agents against various cancer cell lines.
Collapse
Affiliation(s)
- Presenjit
- Radiological Nuclear and Imaging Sciences, Institute of Nuclear Medicine & Allied Sciences, DRDO, Timarpur, 110054, Delhi, India
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, 226025, Lucknow, India
| | - Shubhra Chaturvedi
- Radiological Nuclear and Imaging Sciences, Institute of Nuclear Medicine & Allied Sciences, DRDO, Timarpur, 110054, Delhi, India
| | - Akanksha Singh
- Department of Zoology, Swami Shraddhanand College, University of Delhi, 110007, India
| | - Divya Gautam
- Radiological Nuclear and Imaging Sciences, Institute of Nuclear Medicine & Allied Sciences, DRDO, Timarpur, 110054, Delhi, India
- Centre of Nanotechnology, Indian Institute of Technology, Roorkee, 247667, Uttarakhand, India
| | - Kaman Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, 226025, Lucknow, India
| | - Anil Kumar Mishra
- Radiological Nuclear and Imaging Sciences, Institute of Nuclear Medicine & Allied Sciences, DRDO, Timarpur, 110054, Delhi, India
| |
Collapse
|
5
|
Das C, Ghosh NN, Pulhani V, Biswas G, Singhal P. Bio-functionalized magnetic nanoparticles for cost-effective adsorption of U(vi): experimental and theoretical investigation. RSC Adv 2023; 13:15015-15023. [PMID: 37200695 PMCID: PMC10187032 DOI: 10.1039/d3ra00799e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/02/2023] [Indexed: 05/20/2023] Open
Abstract
U(vi) removal using cost-effective (production cost: $14.03 per kg), biocompatible, and superparamagnetic Cinnamomum tamala (CT) leaf extract-coated magnetite nanoparticles (CT@MNPs or CT@Fe3O4 nanoparticles) from water resources was studied. From pH-dependent experiments, the maximum adsorption efficiency was found to be at pH 8. Isotherm and kinetic studies were performed and found to follow Langmuir isotherm and pseudo-second order kinetics, respectively. The maximum adsorption capacity of CT@MNPs was calculated to be 45.5 mg of U(vi) per g of nanoparticles (NPs). Recyclability studies suggest that over 94% sorption was retained even after four consecutive cycles. The sorption mechanism was explained by the point of the zero-charge experiment and the XPS measurement. Additionally, calculations using density functional theory (DFT) were carried out to support the experimental findings.
Collapse
Affiliation(s)
- Chanchal Das
- Department of Chemistry, Cooch Behar Panchanan Barma University Cooch Behar West Bengal India 736101
| | | | - Vandana Pulhani
- Environmental Monitoring and Assessment Division, Bhabha Atomic Research Centre Mumbai 400085 India 91-22-2550-5313 91-22-2559-2349
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University Cooch Behar West Bengal India 736101
| | - Pallavi Singhal
- Environmental Monitoring and Assessment Division, Bhabha Atomic Research Centre Mumbai 400085 India 91-22-2550-5313 91-22-2559-2349
| |
Collapse
|
6
|
Alfaifi GH, Farghaly TA, Magda H. Abdellattif. Indenyl-thiazole and indenyl-formazan derivatives: Synthesis, anticancer screening studies, molecular-docking, and pharmacokinetic/ molin-spiration properties. PLoS One 2023; 18:e0274459. [PMID: 36857383 PMCID: PMC9977057 DOI: 10.1371/journal.pone.0274459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/29/2022] [Indexed: 03/02/2023] Open
Abstract
Two new series of thiazole and formazan linked to 5-Bromo-indan were synthesized, and their structures were assured based on all possible analytical techniques. The size of the tested derivatives was calculated from the XRD technique and found five derivatives 3, 10a, 14a, 15, and 16 on the nanosized scale. The two series were tested for their efficacy and toxicity as anti-colon and stomach cancers. Derivative 10d showed activity more than the two reference drugs used in the case of SNU-16. Surpislly, in the case of COLO205, five derivatives 4, 6c, 6d, 6e, and 10a are better than the two benchmarks used, and two derivatives, 14a and 14b more potent than cisplatin. All potent derivatives showed a strong fit with the active site of the two tested proteins (gastric cancer (PDB = 2BID) and colon cancer (PDB = 2A4L)) in the molecular docking study. The Pharmacophore and ADME studies of the new derivatives showed that most derivatives revealed promising bioactivity, which indicates the drug-likeness properties against kinase inhibitors, protease, and enzyme inhibitors. In addition, the ProTox-II showed that the four compounds 10d, 16, 6d, and 10a are predicted to have oral LD50 values ranging from 335 to 3500 mg/kg in a rat model with (1 s,4 s)-Eucalyptol bearing the highest values and quercetin holding the lowest one.
Collapse
Affiliation(s)
- Ghaidaa H. Alfaifi
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Thoraya A. Farghaly
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Magda H. Abdellattif
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
7
|
Ahamed FMM, Chinnam S, Challa M, Kariyanna G, Kumer A, Jadoun S, Salawi A, G. Al-Sehemi A, Chakma U, Mashud MAA, Kumari I. Molecular Dynamics Simulation, QSAR, DFT, Molecular Docking, ADMET, and Synthesis of Ethyl 3-((5-Bromopyridin-2-yl)Imino)Butanoate Analogues as Potential Inhibitors of SARS-CoV-2. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2173618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- F. M. Mashood Ahamed
- PG and Research Department of Chemistry, Jamal Mohamed College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Sampath Chinnam
- Department of Chemistry, M. S. Ramaiah Institute of Technology (Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka, India
| | - Malathi Challa
- Department of Chemistry, M. S. Ramaiah Institute of Technology (Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka, India
| | - Gurushantha Kariyanna
- Department of Chemistry, M. S. Ramaiah Institute of Technology (Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka, India
| | - Ajoy Kumer
- Department of Chemistry, Laboratory of Computational Research for Drug Design and Material Science, European University of Bangladesh, Dhaka, Bangladesh
| | - Sapana Jadoun
- Facultad de Ciencias Químicas, Laboratorio de Especiación y Trazas Elementales, Departamento de Química Analítica e Inorgánica, Universidad de Concepción, Concepción, Chile
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | | | - Unesco Chakma
- Department of Chemistry, Laboratory of Computational Research for Drug Design and Material Science, European University of Bangladesh, Dhaka, Bangladesh
| | - Md. Abdullah Al Mashud
- Department of Electrical & Electronic Engineering, Biophysics and Biomedicine Research Laboratory, Islamic University, Kushtia, Bangladesh
| | - Indu Kumari
- Department of Biotechnology, Chandigarh Group of Technology, Chandigarh Group of Colleges, Mohali, Punjab, India
| |
Collapse
|
8
|
Rajimon K, Elangovan N, Amir Khairbek A, Thomas R. Schiff bases from chlorine substituted anilines and salicylaldehyde: Synthesis, characterization, fluorescence, thermal features, biological studies and electronic structure investigations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Melhi S, Bedair MA, Alosaimi EH, Younes AAO, El-Shwiniy WH, Abuelela AM. Effective corrosion inhibition of mild steel in hydrochloric acid by newly synthesized Schiff base nano Co(ii) and Cr(iii) complexes: spectral, thermal, electrochemical and DFT (FMO, NBO) studies. RSC Adv 2022; 12:32488-32507. [PMID: 36425733 PMCID: PMC9661184 DOI: 10.1039/d2ra06571a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Two new cobalt(ii) and chromium(iii) complexes were synthesized and characterized by FT-IR, 1HNMR, UV, elemental analysis, TGA, conductivity, XRD, SEM, and magnetic susceptibility measurements. Structural analysis revealed a bi-dentate chelation and octahedral geometry for the synthesized complexes. The optical band gap of the Co(ii)-L and Cr(iii)-L complexes was found to be 3.00 and 3.25 eV, respectively revealing semiconducting properties. The X-ray diffraction patterns showed nano-crystalline particles for the obtained complexes. In addition, the synthesized metal complexes were examined as corrosion inhibitors for mild steel in HCl solution. The electrochemical investigations showed a maximum inhibition efficiency of 96.60% for Co(ii)-L and 95.45% for Cr(iii)-L where both complexes acted as mixed-type inhibitors. Frontier Molecular orbital (FMO) and Natural bond orbital (NBO) computations showed good tendency of the ligand to donate electrons to the metal through nitrogen atoms while the resultant complexes tended to donate electrons to mild steel more effectively through oxygen atoms and phenyl groups. A comparison between experimental and theoretical findings was considered through the discussion.
Collapse
Affiliation(s)
- Saad Melhi
- Department of Chemistry, College of Science, University of Bisha P.O. Box 511 Bisha 61922 Saudi Arabia
| | - Mahmoud A Bedair
- College of Science and Arts, University of Bisha P.O. Box 101 Al-Namas 61977 Saudi Arabia
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Eid H Alosaimi
- Department of Chemistry, College of Science, University of Bisha P.O. Box 511 Bisha 61922 Saudi Arabia
| | - Ayman A O Younes
- Department of Chemistry, College of Science, University of Bisha P.O. Box 511 Bisha 61922 Saudi Arabia
| | - Walaa H El-Shwiniy
- Department of Chemistry, College of Science, University of Bisha P.O. Box 511 Bisha 61922 Saudi Arabia
- Department of Chemistry, Faculty of Science, Zagazig University Zagazig 44519 Egypt
| | - Ahmed M Abuelela
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar University Nasr City 11884 Cairo Egypt
| |
Collapse
|
10
|
Majid SA, Mir JM, Jan G, Shalla AH. Schiff base complexes, cancer cell lines, and anticancer evaluation: a review. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2131402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | | | - Gowhar Jan
- Department of Chemistry, IUST, Awantipora Pulwama, India
| | | |
Collapse
|
11
|
Chaudhary S, Kumar P, Kaushik M. Exploring the interaction of guanidine ligands Amiloride, Rimeporide and Cariporide with DNA for understanding their role as inhibitors of Na +/H + exchangers (NHEs): A spectroscopic and molecular docking investigation. Int J Biol Macromol 2022; 213:834-844. [PMID: 35675859 DOI: 10.1016/j.ijbiomac.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/05/2022]
Abstract
The inhibition of Na+/H+ Exchangers (NHEs) has shown efficacy in the pathology of several diseases like tumors, cardiovascular, and neurological disorders. The role of guanidine ligands such as amiloride, cariporide, and rimeporide as NHE inhibitors is very well documented but their interaction studies with genomic DNA are still unexplored. In this study, a combination of various biophysical and molecular docking studies was employed to investigate their binding aspects.UV-Visible, fluorescence, and circular dichroism (CD) studies indicated that guanidine ligands bind to the grooves of Calf Thymus DNA (ctDNA). Fluorescence titration studies depict that amiloride binds to ctDNA with a binding constant in the order of 102 M-1 and free energy change (ΔG0) of -14.05 KJ mol-1. Competitive fluorescence studies indicated the minor groove binding property of amiloride, whereas major groove binding mode was deduced for rimeporide and cariporide. Molecular docking studies were also found to be in accordance with the experimental results, revealing the information about the binding energy of the guanidine ligand-ctDNA complex. The docked structures depicted binding energy of -6.4 kcal mol-1 for amiloride and - 6.6 kcal mol-1 for rimeporide and cariporide. Such physicochemical studies of DNA-ligand interactions may facilitate the understanding of the mechanisms of NHE inhibition.
Collapse
Affiliation(s)
- Swati Chaudhary
- Department of Applied Sciences, Maharaja Surajmal Institute of Technology, GGSIP University, New Delhi 110058, India
| | - Pankaj Kumar
- Department of Chemistry, University of Delhi, Delhi 110007, India; Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi 110007, India
| | - Mahima Kaushik
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi 110007, India.
| |
Collapse
|
12
|
Ashfaq M, Tahir MN, Muhammad S, Munawar KS, Ali S, Ahmed G, Al-Sehemi AG, Alarfaji SS, Ibraheem Khan ME. Shedding Light on the Synthesis, Crystal Structure, Characterization, and Computational Study of Optoelectronic Properties and Bioactivity of Imine derivatives. ACS OMEGA 2022; 7:5217-5230. [PMID: 35187337 PMCID: PMC8851652 DOI: 10.1021/acsomega.1c06325] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Two imine compounds named as (E)-2-(((3,4-dichlorophenyl)imino)methyl)phenol (DC2H) and (E)-4-(((2,4-dimethylphenyl)imino)methyl)phenol (DM4H) are synthesized, and their crystal structures are verified using the single-crystal X-ray diffraction (XRD) technique. The crystal structures of the compounds are compared with the closely related crystal structures using the Cambridge Structural Database (CSD). The crystal packing in terms of intermolecular interactions is fully explored by Hirshfeld surface analysis. Void analysis is carried out for both compounds to check the strength of the crystal packing. Furthermore, a state-of-the-art dual computational technique consisting of quantum chemical and molecular docking methods is used to shed light on the molecular structure, optoelectronic properties, and bioactivity of indigenously synthesized compounds. The optimized molecular geometries are compared with their counterpart experimental values. Based on previous reports of biofunctions of the indigenously synthesized imine derivatives, they are explored for their potential inhibition properties against two very crucial proteins (main protease (Mpro) and nonstructural protein 9 (NSP9)) of SARS-CoV-2. The calculated interaction energy values of DC2H and DM4H with Mpro are found to be -6.3 and -6.6 kcal/mol, respectively, and for NSP9, the calculated interaction energy value is found to be -6.5 kcal/mol. We believe that the current combined study through experiments and computational techniques will not only pique the interest of the broad scientific community but also evoke interest in their further in vitro and in vivo investigations.
Collapse
Affiliation(s)
- Muhammad Ashfaq
- Department
of Physics, University of Sargodha, Sargodha 40100, Pakistan
| | | | - Shabbir Muhammad
- Department
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | | | - Saqib Ali
- Department
of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Gulzar Ahmed
- School
of Materials Science and Engineering, South
China University of Technology, Guangzhou 510640, China
| | - Abdullah G. Al-Sehemi
- Department
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Saleh S. Alarfaji
- Department
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | | |
Collapse
|
13
|
Ceramella J, Iacopetta D, Catalano A, Cirillo F, Lappano R, Sinicropi MS. A Review on the Antimicrobial Activity of Schiff Bases: Data Collection and Recent Studies. Antibiotics (Basel) 2022; 11:191. [PMID: 35203793 PMCID: PMC8868340 DOI: 10.3390/antibiotics11020191] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 02/01/2023] Open
Abstract
Schiff bases (SBs) have extensive applications in different fields such as analytical, inorganic and organic chemistry. They are used as dyes, catalysts, polymer stabilizers, luminescence chemosensors, catalyzers in the fixation of CO2 biolubricant additives and have been suggested for solar energy applications as well. Further, a wide range of pharmacological and biological applications, such as antimalarial, antiproliferative, analgesic, anti-inflammatory, antiviral, antipyretic, antibacterial and antifungal uses, emphasize the need for SB synthesis. Several SBs conjugated with chitosan have been studied in order to enhance the antibacterial activity of chitosan. Moreover, the use of the nanoparticles of SBs may improve their antimicrobial effects. Herein, we provide an analytical overview of the antibacterial and antifungal properties of SBs and chitosan-based SBs as well as SBs-functionalized nanoparticles. The most relevant and recent literature was reviewed for this purpose.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (J.C.); (D.I.); (F.C.); (R.L.); (M.S.S.)
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (J.C.); (D.I.); (F.C.); (R.L.); (M.S.S.)
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (J.C.); (D.I.); (F.C.); (R.L.); (M.S.S.)
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (J.C.); (D.I.); (F.C.); (R.L.); (M.S.S.)
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (J.C.); (D.I.); (F.C.); (R.L.); (M.S.S.)
| |
Collapse
|
14
|
Alomari FY, Sharfalddin AA, Abdellattif MH, Domyati D, Basaleh AS, Hussien MA. QSAR Modeling, Molecular Docking and Cytotoxic Evaluation for Novel Oxidovanadium(IV) Complexes as Colon Anticancer Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030649. [PMID: 35163913 PMCID: PMC8838224 DOI: 10.3390/molecules27030649] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 12/15/2022]
Abstract
Four new drug-based oxidovanadium (IV) complexes were synthesized and characterized by various spectral techniques, including molar conductance, magnetic measurements, and thermogravimetric analysis. Moreover, optimal structures geometry for all syntheses was obtained by the Gaussian09 program via the DFT/B3LYP method and showed that all of the metal complexes adopted a square-pyramidal structure. The essential parameters, electrophilicity (ω) value and expression for the maximum charge that an electrophile molecule may accept (ΔNmax) showed the practical biological potency of [VO(CTZ)2] 2H2O. The complexes were also evaluated for their propensity to bind to DNA through UV–vis absorption titration. The result revealed a high binding ability of the [VO(CTZ)2] 2H2O complex with Kb = 1.40 × 10⁶ M−1. Furthermore, molecular docking was carried out to study the behavior of the VO (II) complexes towards colon cancer cell (3IG7) protein. A quantitative structure–activity relationship (QSAR) study was also implemented for the newly synthesized compounds. The results of validation indicate that the generated QSAR model possessed a high predictive power (R2 = 0.97). Within the investigated series, the [VO(CTZ)2] 2H2O complex showed the greatest potential the most selective compound comparing to the stander chemotherapy drug.
Collapse
Affiliation(s)
- Fatimah Y. Alomari
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 76971, Dammam 31441, Saudi Arabia;
| | - Abeer A. Sharfalddin
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.A.S.); (A.S.B.)
| | - Magda H. Abdellattif
- Department of Chemistry, College of Science, Taif University, Al-Haweiah, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Doaa Domyati
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia;
| | - Amal S. Basaleh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.A.S.); (A.S.B.)
| | - Mostafa A. Hussien
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.A.S.); (A.S.B.)
- Department of Chemistry, Faculty of Science, Port Said University, Port Said 42521, Egypt
- Correspondence:
| |
Collapse
|
15
|
Basaleh AS, Howsaui HB, Sharfalddin AA, Hussien MA. Substitution effect on new Schiff base ligand in complexation with some divalent metal ion; synthesis, characterization, DFT and cytotoxicity studies. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|