1
|
Gupta A, Zaghloul N, Thulasingam SK, Robbins IR, Gupta G, Bader J, Garcia JG, Ahmed M. Tailored CD4+ lymphocytes expressing human CHAT protein as a novel vasodilator in attenuating RV pressure in PAH animal model. Transl Res 2025; 278:22-35. [PMID: 39961494 DOI: 10.1016/j.trsl.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/01/2025] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
ChAT-expressing T cells represent ∼0.01 % of total circulating T lymphocytes in adult wild-type mice. However, we previously reported that systemic infusion of ChAT+ve Jurkat T cells into adult mice elicits vasodilation and instantaneous decline in the mean systolic blood pressure, suggesting potential as a biologic therapeutic to attenuate pathologic increases in pulmonary arterial pressures. We now report that ChAT gene-expressing Jurkat cells dose-dependently decrease right ventricular systolic pressures (RVSP) in hypoxic mice and that transgenic mice with ChAT KO restricted to endothelial cells (KO END/ChAT-/-) exhibit significantly elevated pulmonary arterial pressure and peripheral systemic resistance (compared to WT mice). To rigorously characterize the role of CD4 ChAT+ T cells in regulating pulmonary arterial hypertension (PAH) hemodynamics and molecular signatures, we infused CD4+ ChAT+ve cells (0.5 to 2.0 million cells/animal) into adult PAH mice and noted significant reductions in RVSP within 2-3 min post injection (∼ 50 % reduction). The tailored tail vein injection effect was sustained until the animal was euthanized (30-40 min). Mice KO END/ChAT-/-showed a significant and severe hypoxia-induced PAH phenotype compared to WT adult mice. Tail vein injection of biologically active CD4 ChAT+ve cells into either KO END/ChAT-/-mice with hypoxia-induced PAH or into adult rats with hypoxia/Sugen-induced PAH resulted in significant attenuation of RVP elevations. RNA seq data analysis of human pulmonary endothelial cells (HPAECs) incubated with CD4 ChAT+ve T cells showed significant differential regulation of pathways involved in systemic and pulmonary pressure regulation, NO synthesis/regulation, antioxidant expression, and vasodilation. In conclusion, CD4 ChAT+ve T cells have a unique, vasodilating innate immunity mechanism to augment nitric oxide release and potentially mitigate molecular and genetic pathways involved in PAH pathogenesis.
Collapse
Affiliation(s)
- Akash Gupta
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | - Nahla Zaghloul
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States; Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | | | | | - Geetanjali Gupta
- Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Jad Bader
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | - Joe Gn Garcia
- Center for Inflammation Science and Systems Medicine, University of Florida Wertheim Scripps Research Institute, Jupiter, FL, United States
| | - Mohamed Ahmed
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States; Department of Pediatrics, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
2
|
Sun ZY, Lu GQ, Sun HY, Jiang WD, Wang L, Wang YH, Liu LQ, Wang HJ, Tang B, Gao Q, Kang PF. Salidroside ameliorates hypoxic pulmonary hypertension by regulating the two-pore domain potassium TASK-1 channel. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156206. [PMID: 39520952 DOI: 10.1016/j.phymed.2024.156206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/09/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Hypoxic pulmonary vasoconstriction (HPV) is a reflex constriction of vascular smooth muscle. This study aims to investigate the role of Salidroside (Sal) in pulmonary arterial dilatation and the potential mechanism of Sal regulating hypoxic pulmonary hypertension in vitro and in vivo. METHODS A rat model of hypoxic pulmonary hypertension (HPH) was constructed using hypoxic chamber. The effect of Sal on HPH were evaluated using vascular ring, whole cell patch-clamp, WGA staining, HE staining, and Sirius Scarlet staining assays. RESULTS Sal treatment alleviated the injury of acute hypoxia on pulmonary circulation in SD rats. Meanwhile, Sal treatment reduced the pulmonary vascular tone of acute hypoxia in a concentration-dependent manner, which was involved in the TWIK-related acid-sensitive potassium channel 1 (TASK-1) mediating diastolic effect. We found that Sal treatment significantly increased the TASK-1 current of pulmonary artery smooth muscle cells (PASMCs) in a concentration-dependent manner, as well as reversed the inhibitory effect of acute hypoxia on the TASK-1 current. Moreover, Sal treatment improved the TASK-1 current density, suppressed the proliferation, and enhanced the apoptosis of PASMCs in SD rats under continuous hypoxic condition. In addition, we found that the electrophysiological remodeling and pulmonary vascular remodeling of PASMCs were improved by the treatment of Sal through the regulation of TASK-1 channel. CONCLUSIONS Sal could alleviate HPH by restoring the function of TASK-1 channel, which may provide a novel method for the treatment of HPH.
Collapse
Affiliation(s)
- Zheng-Yu Sun
- Department of Cardiovascular Medicine of The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui Province 233004, PR China
| | - Guo-Qing Lu
- Department of Cardiovascular Medicine of The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui Province 233004, PR China
| | - Hong-Yan Sun
- Department of Cardiovascular Medicine of The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui Province 233004, PR China
| | - Wen-Di Jiang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, 233000, PR China
| | - Lei Wang
- Department of Cardiovascular Medicine of The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui Province 233004, PR China
| | - Yu-Hang Wang
- School of Clinical Medicine of Bengbu Medical University, Bengbu, Anhui 233000, PR China
| | - Le-Qiang Liu
- School of General Practice Medicine of Bengbu Medical University, 2600 Dong hai Avenu, Bengbu, Anhui 233000, PR China
| | - Hong-Ju Wang
- Department of Cardiovascular Medicine of The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China
| | - Bi Tang
- Department of Cardiovascular Medicine of The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China.
| | - Qin Gao
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui Province 233004, PR China; Department of Physiology, Bengbu Medical University, Bengbu, Anhui 233000, PR China
| | - Pin-Fang Kang
- Department of Cardiovascular Medicine of The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, PR China; Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui Province 233004, PR China.
| |
Collapse
|
3
|
Zhang Z, Chen J, Su S, Xie X, Ji L, Li Z, Lu D. Luteolin ameliorates hypoxic pulmonary vascular remodeling in rat via upregulating K V1.5 of pulmonary artery smooth muscle cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155840. [PMID: 38941817 DOI: 10.1016/j.phymed.2024.155840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Hypoxic pulmonary vascular remodeling (HPVR) is a key pathological feature of hypoxic pulmonary hypertension (HPH). Oxygen-sensitive potassium (K+) channels in pulmonary artery smooth muscle cells (PASMCs) play a crucial role in HPVR. Luteolin (Lut) is a plant-derived flavonoid compound with variety of pharmacological actions. Our previous study found Lut alleviated HPVR in HPH rat. PURPOSE To elucidate the mechanism by which Lut mitigated HPVR, focusing on oxygen-sensitive voltage-dependent potassium channel 1.5 (Kv1.5). METHODS HPH rat model was established using hypobaric chamber to simulate 5000 m altitude. Isolated perfused/ventilated rat lung, isolated pulmonary arteriole ring was utilized to investigate the impact of Lut on K+ channels activity. Kv1.5 level in lung tissue and pulmonary arteriole of HPH rat was assessed. CyclinD1, CDK4, PCNA, Bax, Bcl-2, cleaved caspase-3 levels in lung tissue of HPH rat were tested. The effect of Lut on Kv1.5, cytoplasmic free calcium concentration ([Ca2+]cyt), CyclinD1, CDK4, PCNA, Bax/Bcl-2 was examined in PASMCs under hypoxia, with DPO-1 as a Kv1.5 specific inhibitor. The binding affinity between Lut and Kv1.5 in PASMCs was detected by drug affinity responsive target stability (DARTS). The overexpression of KCNA5 gene (encoding Kv1.5) in HEK293T cells was utilized to confirm the interaction between Lut and Kv1.5. Furthermore, the impact of Lut on mitochondrial structure, SOD, GSH, GSH-Px, MDA and HIF-1α levels were evaluated in lung tissue of HPH rat and PASMCs under hypoxia. RESULTS Lut dilated pulmonary artery by directly activating Kv and Ca2+-activated K+ channels (KCa) in smooth muscle. Kv1.5 level in lung tissue and pulmonary arteriole of HPH rat was upregulated by Lut. Lut downregulated CyclinD1, CDK4, PCNA while upregulating Bax/Bcl-2/caspase-3 axis in lung tissue of HPH rat. Lut decreased [Ca2+]cyt, reduced CDK4, CyclinD1, PCNA, increased Bax/Bcl-2 ratio, in PASMCs under hypoxia, by upregulating Kv1.5. The binding affinity and the interaction between Lut and Kv1.5 was verified in PASMCs and in HEK293T cells. Lut also decreased [Ca2+]cyt and inhibited proliferation via targeting Kv1.5 of HEK293T cells under hypoxia. Furthermore, Lut protected mitochondrial structure, increased SOD, GSH, GSH-Px, decreased MDA, in lung tissue of HPH rat. Lut downregulated HIF-1α level in both lung tissue of HPH rat and PASMCs under hypoxia. CONCLUSION Lut alleviated HPVR by promoting vasodilation of pulmonary artery, reducing cellular proliferation, and inducing apoptosis through upregulating of Kv1.5 in PASMCs.
Collapse
MESH Headings
- Animals
- Kv1.5 Potassium Channel/metabolism
- Pulmonary Artery/drug effects
- Vascular Remodeling/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Rats
- Male
- Hypoxia/drug therapy
- Luteolin/pharmacology
- Rats, Sprague-Dawley
- Humans
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/metabolism
- Up-Regulation/drug effects
- HEK293 Cells
- Disease Models, Animal
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
Collapse
Affiliation(s)
- Zhaoxia Zhang
- Research Center for High Altitude Medicine, Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory for High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, China; Qinghai Health Institute of Sciences, Xining, 810016, China
| | - Ju Chen
- Central Laboratory, Clinical Medical College & Affiliated Hospital of Chengdu University, Sichuan, 610086, China
| | - Shanshan Su
- Technical Center of Xining Customs, Key Laboratory of Food Safety Research in Qinghai Province, Xining, 810013, China
| | - Xin Xie
- Research Center for High Altitude Medicine, Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory for High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, China
| | - Lei Ji
- Qinghai Provincial People's Hospital, Xining, 810007, China
| | - Zhanqiang Li
- Research Center for High Altitude Medicine, Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory for High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, China.
| | - Dianxiang Lu
- Research Center for High Altitude Medicine, Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory for High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, China; Central Laboratory, Clinical Medical College & Affiliated Hospital of Chengdu University, Sichuan, 610086, China.
| |
Collapse
|
4
|
Chen YC, Shih CL, Wu CL, Fang YH, So EC, Wu SN. Exploring the Impact of BK Ca Channel Function in Cellular Membranes on Cardiac Electrical Activity. Int J Mol Sci 2024; 25:1537. [PMID: 38338830 PMCID: PMC10855144 DOI: 10.3390/ijms25031537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
This review paper delves into the current body of evidence, offering a thorough analysis of the impact of large-conductance Ca2+-activated K+ (BKCa or BK) channels on the electrical dynamics of the heart. Alterations in the activity of BKCa channels, responsible for the generation of the overall magnitude of Ca2+-activated K+ current at the whole-cell level, occur through allosteric mechanisms. The collaborative interplay between membrane depolarization and heightened intracellular Ca2+ ion concentrations collectively contribute to the activation of BKCa channels. Although fully developed mammalian cardiac cells do not exhibit functional expression of these ion channels, evidence suggests their presence in cardiac fibroblasts that surround and potentially establish close connections with neighboring cardiac cells. When cardiac cells form close associations with fibroblasts, the high single-ion conductance of these channels, approximately ranging from 150 to 250 pS, can result in the random depolarization of the adjacent cardiac cell membranes. While cardiac fibroblasts are typically electrically non-excitable, their prevalence within heart tissue increases, particularly in the context of aging myocardial infarction or atrial fibrillation. This augmented presence of BKCa channels' conductance holds the potential to amplify the excitability of cardiac cell membranes through effective electrical coupling between fibroblasts and cardiomyocytes. In this scenario, this heightened excitability may contribute to the onset of cardiac arrhythmias. Moreover, it is worth noting that the substances influencing the activity of these BKCa channels might influence cardiac electrical activity as well. Taken together, the BKCa channel activity residing in cardiac fibroblasts may contribute to cardiac electrical function occurring in vivo.
Collapse
Affiliation(s)
- Yin-Chia Chen
- Division of Cardiovascular Surgery, Department of Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Chia-Lung Shih
- Clinical Research Center, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60056, Taiwan
| | - Chao-Liang Wu
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Yi-Hsien Fang
- Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Edmund Cheung So
- Department of Anesthesia, An Nan Hospital, China Medical University, Tainan 70965, Taiwan
| | - Sheng-Nan Wu
- Department of Research and Education, An Nan Hospital, China Medical University, Tainan 70965, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 80421, Taiwan
| |
Collapse
|
5
|
Xia C, Liu C, Ren S, Cai Y, Zhang Q, Xia C. Potassium channels, tumorigenesis and targeted drugs. Biomed Pharmacother 2023; 162:114673. [PMID: 37031494 DOI: 10.1016/j.biopha.2023.114673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023] Open
Abstract
Potassium channels play an important role in human physiological function. Recently, various molecular mechanisms have implicated abnormal functioning of potassium channels in the proliferation, migration, invasion, apoptosis, and cancer stem cell phenotype formation. Potassium channels also mediate the association of tumor cells with the tumor microenvironment. Meanwhile, potassium channels are important targets for cancer chemotherapy. A variety of drugs exert anti-cancer effects by modulating potassium channels in tumor cells. Therefore, there is a need to understand how potassium channels participate in tumor development and progression, which could reveal new, novel targets for cancer diagnosis and treatment. This review summarizes the roles of voltage-gated potassium channels, calcium-activated potassium channels, inwardly rectifying potassium channels, and two-pore domain potassium channels in tumorigenesis and the underlying mechanism of potassium channel-targeted drugs. Therefore, the study lays the foundation for rational and effective drug design and individualized clinical therapeutics.
Collapse
Affiliation(s)
- Cong Xia
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116023, China
| | - Can Liu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong Province 528099, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Shuangyi Ren
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116023, China
| | - Yantao Cai
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong Province 528099, China
| | - Qianshi Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116023, China.
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong Province 528099, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong Province 510515, China.
| |
Collapse
|
6
|
Oliveira N, Marcelino H, Azevedo R, Verde I. Effects of bisphenol A on human umbilical arteries. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27670-27681. [PMID: 36385337 DOI: 10.1007/s11356-022-24069-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical widely used in the plastics industry, including food container, toys, and medical equipment. We analyzed the effect of BPA in human umbilical artery contractility and expression of some proteins modulating this function, such as ionic channels and proteins involved in the cGMP pathway. Using standard organ bath technique, rings of human umbilical arteries without endothelium were contracted by 5-HT (1 μM) and histamine (10 μM) and the effect of different concentrations of BPA (1 nM-100 μM) was analyzed. The results showed that BPA is a vasodilator of these arteries in a concentration-dependent way. Besides, qPCR studies on human umbilical smooth muscle cells (HUSMC) allowed to analyze the effects of BPA on gene expression. Thus, 12-h exposition to BPA induced reduction of expression of L-type calcium channels (LTCC), alpha subunit of BKCa channels, and Kvβ1 and Kvβ3 from Kv channels. BPA also decreased the expression of soluble guanylate cyclase (sGC) and natriuretic peptide receptor type A (NPRA), meanwhile increasing that of PKG, proteins involved in vasodilation of human umbilical arteries (HUA) by cGMP. Further studies will be necessary to increase knowledge about the implications of these changes induced by BPA exposure.
Collapse
Affiliation(s)
- Nádia Oliveira
- Faculty of Health Sciences & Health Sciences Research Centre (CICS-UBI; Centro de Investigação em Ciências da Saúde), University of Beira Interior, Av. Infante D. Henrique S/N, 6200-506, Covilhã, Portugal
| | - Helena Marcelino
- Faculty of Health Sciences & Health Sciences Research Centre (CICS-UBI; Centro de Investigação em Ciências da Saúde), University of Beira Interior, Av. Infante D. Henrique S/N, 6200-506, Covilhã, Portugal
| | - Regina Azevedo
- Faculty of Health Sciences & Health Sciences Research Centre (CICS-UBI; Centro de Investigação em Ciências da Saúde), University of Beira Interior, Av. Infante D. Henrique S/N, 6200-506, Covilhã, Portugal
| | - Ignacio Verde
- Faculty of Health Sciences & Health Sciences Research Centre (CICS-UBI; Centro de Investigação em Ciências da Saúde), University of Beira Interior, Av. Infante D. Henrique S/N, 6200-506, Covilhã, Portugal.
| |
Collapse
|
7
|
Antigny F. Role of Ion Channels in the Development of Pulmonary Arterial Hypertension. Biomolecules 2022; 12:1373. [PMID: 36291582 PMCID: PMC9599897 DOI: 10.3390/biom12101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an uncommon, progressive, and fatal disease [...].
Collapse
Affiliation(s)
- Fabrice Antigny
- INSERM UMR_S 999 «Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique», Hôpital Marie Lannelongue, 133, Avenue de la Résistance, F-92350 Le Plessis Robinson, France
| |
Collapse
|
8
|
Xiang Y, Fan D, An Q, Zhang T, Wu X, Ding J, Xu X, Yue G, Tang S, Du Q, Xu J, Xie R. Effects of Ion-Transporting Proteins on the Digestive System Under Hypoxia. Front Physiol 2022; 13:870243. [PMID: 36187789 PMCID: PMC9515906 DOI: 10.3389/fphys.2022.870243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Hypoxia refers to a state of oxygen limitation, which mainly mediates pathological processes in the human body and participates in the regulation of normal physiological processes. In the hypoxic environment, the main regulator of human body homeostasis is the hypoxia-inducible factor family (HIF). HIF can regulate the expression of many hypoxia-induced genes and then participate in various physiological and pathological processes of the human body. Ion-transporting proteins are extremely important types of proteins. Ion-transporting proteins are distributed on cell membranes or organelles and strictly control the inflow or outflow of ions in cells or organelles. Changes in ions in cells are often closely related to extensive physiological and pathological processes in the human body. Numerous studies have confirmed that hypoxia and its regulatory factors can regulate the transcription and expression of ion-transporting protein-related genes. Under hypoxic stress, the regulation and interaction of ion-transporting proteins by hypoxia often leads to diseases of various human systems and even tumors. Using ion-transporting proteins and hypoxia as targets to explore the mechanism of digestive system diseases and targeted therapy is expected to become a new breakthrough point.
Collapse
Affiliation(s)
- Yiwei Xiang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Dongdong Fan
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Qimin An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Ting Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Xianli Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Jianhong Ding
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Xiaolin Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Gengyu Yue
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Siqi Tang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Qian Du
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
| | - Jingyu Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
- *Correspondence: Jingyu Xu, ; Rui Xie,
| | - Rui Xie
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi, China
- *Correspondence: Jingyu Xu, ; Rui Xie,
| |
Collapse
|
9
|
Role of Ion Channel Remodeling in Endothelial Dysfunction Induced by Pulmonary Arterial Hypertension. Biomolecules 2022; 12:biom12040484. [PMID: 35454073 PMCID: PMC9031742 DOI: 10.3390/biom12040484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Endothelial dysfunction is a key player in advancing vascular pathology in pulmonary arterial hypertension (PAH), a disease essentially characterized by intense remodeling of the pulmonary vasculature, vasoconstriction, endothelial dysfunction, inflammation, oxidative stress, and thrombosis in situ. These vascular features culminate in an increase in pulmonary vascular resistance, subsequent right heart failure, and premature death. Over the past years, there has been a great development in our understanding of pulmonary endothelial biology related to the genetic and molecular mechanisms that modulate the endothelial response to direct or indirect injury and how their dysregulation can promote PAH pathogenesis. Ion channels are key regulators of vasoconstriction and proliferative/apoptotic phenotypes; however, they are poorly studied at the endothelial level. The current review will describe and categorize different expression, functions, regulation, and remodeling of endothelial ion channels (K+, Ca2+, Na+, and Cl− channels) in PAH. We will focus on the potential pathogenic role of ion channel deregulation in the onset and progression of endothelial dysfunction during the development of PAH and its potential therapeutic role.
Collapse
|