1
|
Wang R, Wang J, Yu J, Li Z, Zhang M, Chen Y, Liu F, Jiang D, Guo J, Li X, Wu Y. Mfn2 regulates calcium homeostasis and suppresses PASMCs proliferation via interaction with IP3R3 to mitigate pulmonary arterial hypertension. J Transl Med 2025; 23:366. [PMID: 40128893 PMCID: PMC11934582 DOI: 10.1186/s12967-025-06384-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 03/14/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a chronic disorder characterized by the excessive proliferation of pulmonary arterial smooth muscle cells (PASMCs). Recent studies indicate that Mitochondrial fusion protein 2 (Mfn2) maintains intracellular calcium (Ca2+) homeostasis via the mitochondria-associated endoplasmic reticulum membranes (MAMs) pathway, thereby inhibiting PASMCs proliferation and reducing pulmonary artery pressure. However, the precise mechanisms remain unclear. METHODS This study explored the roles of Mfn2 and IP3R3 in PAH progression by assessing their expression in lung tissues of a monocrotaline (MCT)-induced PAH rat model. Immunoprecipitation assays were performed to confirm the interaction between Mfn2 and IP3R3. PASMCs were treated with either silenced or overexpressed Mfn2 and exposed to TNF-ɑ to observe effects on ER stress, IP3R3 expression, mitochondrial Ca2+ transport, and mitochondrial integrity. We also evaluated the effects of 4-phenylbutyric acid (4-PBA) and cistanche phenylethanol glycosides (CPGs) on the Mfn2-IP3R3 interaction in a TNF-α-induced PAH cell model, focusing on Ca2+ transport and mitochondrial structure. RESULTS Mfn2 expression was significantly down-regulated in the MCT-induced PAH rat model. Inhibition of ER stress upregulated Mfn2 expression, downregulated IP3R3 expression, increased mitochondrial Ca2+ concentration, and reduced autophagy, improving pulmonary hemodynamics and vascular remodeling. Overexpression of Mfn2 reduced ER stress, decreased IP3R3 expression, decreased mitochondrial Ca2+ transport, and restored mitochondrial integrity. Immunoprecipitation assays confirmed the interaction between Mfn2 and IP3R3. Inhibition of IP3R3 elevated Mfn2 levels, yielding similar beneficial effects as Mfn2 overexpression. 4-PBA and CPGs modulated the Mfn2-IP3R3 signaling axis, effectively inhibiting PAH progression. CONCLUSIONS Mfn2 mediates mitochondrial Ca2+ transport via IP3R3, suppressing PASMCs proliferation and pulmonary vascular remodeling, underscoring Mfn2's potential in regulating metabolic processes and vascular remodeling in PAH. These findings provide new insights for developing PAH-targeted therapeutics and establish a theoretical basis for traditional Chinese medicine in PAH prevention and treatment.
Collapse
Affiliation(s)
- Rui Wang
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Jie Wang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Jing Yu
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Zhiqiang Li
- Animal Laboratory Center, Xinjiang Medical University, Urumqi, 830011, China
| | - Minfang Zhang
- Electron Microscope Lab, Xinjiang Medical University, Urumqi, 830011, China
| | - Yuhu Chen
- Department of General Surgery, Lingcheng District People's Hospital, Dezhou, 253500, China
| | - Fen Liu
- A State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Dongmei Jiang
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Jingfei Guo
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Xiaomei Li
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China.
| | - Yun Wu
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
2
|
Pilard CM, Cardouat G, Gauthereau I, Gassiat L, Dubois M, Robillard P, Sauvestre F, Pelluard F, Berenguer S, Sarreau M, Claverol S, Tokarski C, Sentilhes L, Coatleven F, Vincienne M, Marthan R, Dumas-de-la-Roque E, Berger P, Friedberg MK, Renesme L, Freund-Michel V, Guibert C. Celastrol has beneficial effects on pulmonary hypertension associated with bronchopulmonary dysplasia: Preclinical study outcomes. Biomed Pharmacother 2025; 184:117881. [PMID: 39891950 DOI: 10.1016/j.biopha.2025.117881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025] Open
Abstract
Pulmonary hypertension associated with bronchopulmonary dysplasia (BPD-PH) is a severe cardiorespiratory disease of preterm newborns leading to an excess of mortality in infancy and no curative treatment currently exists. Inflammation and oxidative stress are the common pathways that lead to BPD-PH. Therefore, we aimed to evaluate celastrol, a molecule with anti-inflammatory and antioxidant properties, as a promising preventive treatment in BPD-PH. In a model of neonatal rats exposed to hyperoxia, we demonstrated that mortality was prevented in animals treated with celastrol. Moreover, in vivo, celastrol decreased pulmonary hypertension, right ventricular hypertrophy, vascular remodeling, pulmonary arterial hyperreactivity to endothelin-1 and inflammation but had no effect on hypoalveolarization and altered angiogenesis. In vitro experiments carried out on human fetal pulmonary artery smooth muscle cells (HfPA-SMC) exposed to hyperoxia showed that endothelin-1-induced intracellular calcium response was increased and celastrol significantly inhibited this effect, without modifying endothelin-1 receptors expression. Regarding inflammation, celastrol decreased both CD68 staining in lung and secretion of the pro-inflammatory cytokine Tissue Inhibitor of Metalloproteinases-1 in intrapulmonary arteries from neonatal rats. IL-6 secretion was also decreased by celastrol in HfPA-SMC. Finally, hyperoxia increased heme oxygenase-1 (HO-1) expression and celastrol induced an overexpression of HO-1 in both neonatal rat lung and human cells. These results suggest that celastrol has a preventive effect on major hallmarks of PH in both a rat hyperoxic model of BPD-PH and HfPA-SMC exposed to hyperoxia via modulation of macrophage inflammatory signaling and HfPA-SMC calcium cycling. Celastrol could therefore be considered as a promising preventive treatment in BPD-PH.
Collapse
MESH Headings
- Animals
- Bronchopulmonary Dysplasia/drug therapy
- Bronchopulmonary Dysplasia/metabolism
- Pentacyclic Triterpenes/pharmacology
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/prevention & control
- Humans
- Triterpenes/pharmacology
- Triterpenes/therapeutic use
- Animals, Newborn
- Rats
- Pulmonary Artery/drug effects
- Pulmonary Artery/pathology
- Pulmonary Artery/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Disease Models, Animal
- Hyperoxia/complications
- Hyperoxia/drug therapy
- Rats, Wistar
- Vascular Remodeling/drug effects
- Hypertrophy, Right Ventricular/drug therapy
- Hypertrophy, Right Ventricular/prevention & control
- Hypertrophy, Right Ventricular/etiology
- Male
- Lung/drug effects
- Lung/pathology
- Lung/metabolism
Collapse
Affiliation(s)
- Claire-Marie Pilard
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France; Neonatology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Guillaume Cardouat
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France
| | - Isabel Gauthereau
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France
| | - Laure Gassiat
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France
| | - Mathilde Dubois
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France
| | - Paul Robillard
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France
| | - Fanny Sauvestre
- Pathology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Fanny Pelluard
- Pathology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Sophie Berenguer
- Pathology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Melie Sarreau
- Pathology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | | | | | - Loïc Sentilhes
- Obstetrics and Gynecology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Frederic Coatleven
- Obstetrics and Gynecology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Marie Vincienne
- Obstetrics and Gynecology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Roger Marthan
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France; Respiratory Functional Explorations Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Eric Dumas-de-la-Roque
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France; Neonatology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Patrick Berger
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France; Respiratory Functional Explorations Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Mark K Friedberg
- Department of Pediatrics, the Labatt Family Heart Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Laurent Renesme
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France; Neonatology Department, Bordeaux University Hospital, Bordeaux F-33000, France
| | - Véronique Freund-Michel
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France
| | - Christelle Guibert
- Plateforme Technologique d'Innovation Biomédicale, Pessac F-33600, France; INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, Pessac F-33600, France.
| |
Collapse
|
3
|
Li S, Fu Z, Hong W, Yuan H, Cao W, Xu J, Liu R, Lin Z, Xiang Z, Peng G. Chronic hypoxia promotes pulmonary venous smooth muscle cell proliferation through the CaSR-TRPC6/ROCE pathway. Exp Cell Res 2025; 444:114363. [PMID: 39637934 DOI: 10.1016/j.yexcr.2024.114363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
The mechanism underlying chronic hypoxia (CH)-induced pulmonary venous remodeling remains unclear. Cell proliferation is key in vascular remodeling, and the calcium-sensing receptor (CaSR) protein contributes to CH-induced pulmonary venous smooth muscle cell (PVSMC) proliferation. In pulmonary arterial smooth muscle cells, CaSR and transient receptor potential canonical (TRPC) proteins interact, contributing to CH-induced cell proliferation via CaSR-TRPC1/6 signaling. We investigated whether a similar pathway exists in PVSMCs. Rat PVSMCs were isolated and subjected to CH. Cell proliferation was assessed by cell counting, CCK-8, and BrdU incorporation assays. Expression of CaSR and TRPC was analyzed by qPCR and western blotting, while interactions between CaSR and TRPC were detected by co-immunoprecipitation assay. Extracellular Ca2+ restoration was evaluated, to assess store- and receptor-operated Ca2+ entry (SOCE and ROCE, respectively). CH enhanced PVSMC numbers, viability, and DNA synthesis, and upregulated CaSR and TRPC6 expression. Further, CaSR and TRPC6 interacted with one another. CaSR inhibitors (NPS2143, NPS2390) reduced, whereas activators (spermine, R568) enhanced, CH-induced increases in PVSMC numbers, viability, DNA synthesis, and TRPC6 expression. CaSR knockdown using siRNA inhibited CH-induced TRPC6 upregulation and attenuated CH-induced increases in PVSMC numbers, viability, and DNA synthesis. TRPC6 knockdown had no significant effect on CH-induced CaSR upregulation, but significantly attenuated CH-induced increases in PVSMC number, viability, and DNA synthesis. CaSR knockdown reduced ROCE, but not SOCE, enhancement. Overall, CH promotes PVSMC proliferation through the CaSR-TRPC6/ROCE pathway.
Collapse
MESH Headings
- Receptors, Calcium-Sensing/metabolism
- Receptors, Calcium-Sensing/genetics
- Animals
- Cell Proliferation
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Rats
- TRPC6 Cation Channel/metabolism
- TRPC6 Cation Channel/genetics
- Male
- Signal Transduction
- Pulmonary Veins/metabolism
- Pulmonary Veins/pathology
- Hypoxia/metabolism
- Rats, Sprague-Dawley
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/cytology
- Cells, Cultured
- Calcium/metabolism
- TRPC Cation Channels
Collapse
Affiliation(s)
- Shaoxing Li
- The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhenli Fu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Geriatric Respiratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wei Hong
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong- Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hong Yuan
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weitao Cao
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Juan Xu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Rongmin Liu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhuandi Lin
- The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhiming Xiang
- The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| | - Gongyong Peng
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Walker V. The Molecular Biology of Placental Transport of Calcium to the Human Foetus. Int J Mol Sci 2025; 26:383. [PMID: 39796238 PMCID: PMC11720126 DOI: 10.3390/ijms26010383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
From fertilisation to delivery, calcium must be transported into and within the foetoplacental unit for intracellular signalling. This requires very rapid, precisely located Ca2+ transfers. In addition, from around the eighth week of gestation, increasing amounts of calcium must be routed directly from maternal blood to the foetus for bone mineralisation through a flow-through system, which does not impact the intracellular Ca2+ concentration. These different processes are mediated by numerous membrane-sited Ca2+ channels, transporters, and exchangers. Understanding the mechanisms is essential to direct interventions to optimise foetal development and postnatal bone health and to protect the mother and foetus from pre-eclampsia. Ethical issues limit the availability of human foetal tissue for study. Our insight into the processes of placental Ca2+ handling is advancing rapidly, enabled by developing genetic, analytical, and computer technology. Because of their diverse sources, the reports of new findings are scattered. This review aims to pull the data together and to highlight areas of uncertainty. Areas needing clarification include trafficking, membrane expression, and recycling of channels and transporters in the placental microvilli; placental metabolism of vitamin D in gestational diabetes and pre-eclampsia; and the vascular effects of increased endothelial Orai expression by pregnancy-specific beta-1-glycoproteins PSG1 and PSG9.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton SO16 6YD, UK
| |
Collapse
|
5
|
Li H, Li X, Sun Y, Zhi Z, Song L, Li M, Feng Y, Zhang Z, Liu Y, Chen Y, Zhao F, Zhu T. The Role of Ion Channels in Pulmonary Hypertension: A Review. Pulm Circ 2025; 15:e70050. [PMID: 39958971 PMCID: PMC11830494 DOI: 10.1002/pul2.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/16/2024] [Accepted: 01/31/2025] [Indexed: 02/18/2025] Open
Abstract
Pulmonary hypertension (PH) constitutes a critical challenge in cardiopulmonary medicine with a pathogenesis that is multifaceted and intricate. Ion channels, crucial determinants of cellular electrochemical gradient modulation, have emerged as significant participants in the pathophysiological progression of PH. These channels, abundant on the membranes of pulmonary artery smooth muscle cells (PASMCs) and pulmonary artery endothelial cells (PAECs), pivotally navigate the nuanced interplay of cell proliferation, migration, and endothelial function, each vital to the pulmonary vascular remodeling (PVR) hallmark of PH. Our review delves into the mechanistic insights of potassium, calcium, magnesium, zinc, and chloride ion channels in relation to their involvement in PH. It not only emphasizes the notable advances and discoveries that cast these ion channels as underlying factors in the etiology and exacerbation of PH but also highlights their potential as innovative therapeutic targets.
Collapse
Affiliation(s)
- Han‐Fei Li
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
| | - Xin‐Yao Li
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
| | - Yu‐Qing Sun
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
| | - Ze‐Ying Zhi
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
| | - Liao‐Fan Song
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
| | - Meng Li
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
| | - Yi‐Ming Feng
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
| | - Zhi‐Hao Zhang
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
| | - Yan‐Feng Liu
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
| | - Yu‐Jing Chen
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
| | - Fan‐Rong Zhao
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
| | - Tian‐Tian Zhu
- College of PharmacyXinxiang Medical UniversityXinxiangChina
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionXinxiangChina
- Department of PharmacyThe First Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
| |
Collapse
|
6
|
Zhao E, Wang J, Zhao Y, Xia Q, Wang H, Li Z, Li C, Gai X. Echinacoside inhibits PASMCs calcium overload to prevent hypoxic pulmonary artery remodeling by regulating TRPC1/4/6 and calmodulin. Open Med (Wars) 2024; 19:20241044. [PMID: 39381430 PMCID: PMC11459269 DOI: 10.1515/med-2024-1044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 08/11/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024] Open
Abstract
Abstract Research indicates that hypoxic pulmonary hypertension (HPH) potentially stimulates the sympathetic nervous system, which may increase norepinephrine (NE) release and cause excessive Ca2+ influx into pulmonary artery smooth muscle cells (PASMCs), leading to calcium overload and abnormal PASMC proliferation, factors closely associated with pulmonary vascular remodeling (PVR). This study investigates the potential mechanisms underlying echinacoside (ECH) treatment in HPH. Method In the in vitro experiment, NE-induced PASMCs were used to simulate HPH-induced PASMCs' calcium overload and abnormal proliferation. Postincubation with ECH, [Ca2+]cyt changes were detected using Fluo-4 AM. Flow cytometry was employed to ascertain ECH's inhibitory effect on PASMCs proliferation. For in vivo experiments, rats were exposed to a hypoxic and low-pressure oxygen environment to establish the HPH model. Post-ECH treatment, hematoxylin and eosin (HE) staining was conducted to assess PVR, and western blot analysis was used to examine protein expression in the lung tissues of the different groups. Results ECH was observed to inhibit [Ca2+]cyt increase in NE-induced PASMCs in a concentration-dependent manner, effectively reducing abnormal cell proliferation. It also reduced the expression of Transient receptor potential channel (TRPC) 1 (TRPC1), TRPC4, TRPC6, and calmodulin in PASMCs. In vivo studies demonstrated that ECH lowered the expression of these proteins in lung tissues of HPH rats, significantly decreased mean pulmonary artery pressure, and mitigated PVR.
Collapse
Affiliation(s)
- Enqi Zhao
- School of Pharmacy, Qinghai Minzu University, Xining, Qinghai, 810007, China
| | - Jinyu Wang
- School of Pharmacy, Qinghai Minzu University, Xining, Qinghai, 810007, China
| | - Yuefu Zhao
- School of Pharmacy, Qinghai Minzu University, Xining, Qinghai, 810007, China
| | - Qingqing Xia
- School of Pharmacy, Qinghai Minzu University, Xining, Qinghai, 810007, China
| | - Hongmai Wang
- School of Pharmacy, Qinghai Minzu University, Xining, Qinghai, 810007, China
| | - Zhanqiang Li
- Qinghai University Plateau Medicine Research Center, Xining, Qinghai Province, China
| | - Cen Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai Province, China
| | - Xiangyun Gai
- School of Pharmacy, Qinghai Minzu University, Xining, Qinghai, 810007, China
| |
Collapse
|
7
|
Saint-Martin Willer A, El Jekmek K, Antigny F. Therapeutic Potential of Sodium Houttuyfonate in Pulmonary Hypertension through Orai-Ca 2+ Channels. Am J Respir Cell Mol Biol 2024; 71:262-263. [PMID: 38749029 PMCID: PMC11376245 DOI: 10.1165/rcmb.2024-0214ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2024] Open
Affiliation(s)
- Anaïs Saint-Martin Willer
- Faculté de Médecine Université Paris-Saclay Le Kremlin-Bicêtre, France
- Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique Hôpital Marie Lannelongue Le Plessis-Robinson, France
| | - Kristell El Jekmek
- Faculté de Médecine Université Paris-Saclay Le Kremlin-Bicêtre, France
- Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique Hôpital Marie Lannelongue Le Plessis-Robinson, France
| | - Fabrice Antigny
- Faculté de Médecine Université Paris-Saclay Le Kremlin-Bicêtre, France
- Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique Hôpital Marie Lannelongue Le Plessis-Robinson, France
| |
Collapse
|
8
|
Dai ZK, Chen YC, Hsieh SL, Yeh JL, Hsu JH, Wu BN. The Xanthine Derivative KMUP-1 Inhibits Hypoxia-Induced TRPC1 Expression and Store-Operated Ca 2+ Entry in Pulmonary Arterial Smooth Muscle Cells. Pharmaceuticals (Basel) 2024; 17:440. [PMID: 38675401 PMCID: PMC11053947 DOI: 10.3390/ph17040440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/17/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Exposure to hypoxia results in the development of pulmonary arterial hypertension (PAH). An increase in the intracellular Ca2+ concentration ([Ca2+]i) in pulmonary artery smooth muscle cells (PASMCs) is a major trigger for pulmonary vasoconstriction and proliferation. This study investigated the mechanism by which KMUP-1, a xanthine derivative with phosphodiesterase inhibitory activity, inhibits hypoxia-induced canonical transient receptor potential channel 1 (TRPC1) protein overexpression and regulates [Ca2+]i through store-operated calcium channels (SOCs). Ex vivo PASMCs were cultured from Sprague-Dawley rats in a modular incubator chamber under 1% O2/5% CO2 for 24 h to elucidate TRPC1 overexpression and observe the Ca2+ release and entry. KMUP-1 (1 μM) inhibited hypoxia-induced TRPC family protein encoded for SOC overexpression, particularly TRPC1. KMUP-1 inhibition of TRPC1 protein was restored by the protein kinase G (PKG) inhibitor KT5823 (1 μM) and the protein kinase A (PKA) inhibitor KT5720 (1 μM). KMUP-1 attenuated protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA, 1 μM)-upregulated TRPC1. We suggest that the effects of KMUP-1 on TRPC1 might involve activating the cyclic guanosine monophosphate (cGMP)/PKG and cyclic adenosine monophosphate (cAMP)/PKA pathways and inhibiting the PKC pathway. We also used Fura 2-acetoxymethyl ester (Fura 2-AM, 5 μM) to measure the stored calcium release from the sarcoplasmic reticulum (SR) and calcium entry through SOCs in hypoxic PASMCs under treatment with thapsigargin (1 μM) and nifedipine (5 μM). In hypoxic conditions, store-operated calcium entry (SOCE) activity was enhanced in PASMCs, and KMUP-1 diminished this activity. In conclusion, KMUP-1 inhibited the expression of TRPC1 protein and the activity of SOC-mediated Ca2+ entry upon SR Ca2+ depletion in hypoxic PASMCs.
Collapse
Affiliation(s)
- Zen-Kong Dai
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Z.-K.D.); (J.-H.H.)
- Division of Pediatric Cardiology and Pulmonology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Yi-Chen Chen
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.C.); (J.-L.Y.)
| | - Su-Ling Hsieh
- Department of Pharmacy, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Jwu-Lai Yeh
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.C.); (J.-L.Y.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Jong-Hau Hsu
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Z.-K.D.); (J.-H.H.)
- Division of Pediatric Cardiology and Pulmonology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Bin-Nan Wu
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.C.); (J.-L.Y.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
9
|
Mocumbi A, Humbert M, Saxena A, Jing ZC, Sliwa K, Thienemann F, Archer SL, Stewart S. Pulmonary hypertension. Nat Rev Dis Primers 2024; 10:1. [PMID: 38177157 DOI: 10.1038/s41572-023-00486-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
Pulmonary hypertension encompasses a range of conditions directly or indirectly leading to elevated pressures within the pulmonary arteries. Five main groups of pulmonary hypertension are recognized, all defined by a mean pulmonary artery pressure of >20 mmHg: pulmonary arterial hypertension (rare), pulmonary hypertension associated with left-sided heart disease (very common), pulmonary hypertension associated with lung disease (common), pulmonary hypertension associated with pulmonary artery obstructions, usually related to thromboembolic disease (rare), and pulmonary hypertension with unclear and/or multifactorial mechanisms (rare). At least 1% of the world's population is affected, with a greater burden more likely in low-income and middle-income countries. Across all its forms, pulmonary hypertension is associated with adverse vascular remodelling with obstruction, stiffening and vasoconstriction of the pulmonary vasculature. Without proactive management this leads to hypertrophy and ultimately failure of the right ventricle, the main cause of death. In older individuals, dyspnoea is the most common symptom. Stepwise investigation precedes definitive diagnosis with right heart catheterization. Medical and surgical treatments are approved for pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. There are emerging treatments for other forms of pulmonary hypertension; but current therapy primarily targets the underlying cause. There are still major gaps in basic, clinical and translational knowledge; thus, further research, with a focus on vulnerable populations, is needed to better characterize, detect and effectively treat all forms of pulmonary hypertension.
Collapse
Affiliation(s)
- Ana Mocumbi
- Faculdade de Medicina, Universidade Eduardo Mondlane, Maputo, Moçambique.
- Instituto Nacional de Saúde, EN 1, Marracuene, Moçambique.
| | - Marc Humbert
- Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre (Assistance Publique Hôpitaux de Paris), Université Paris-Saclay, INSERM UMR_S 999, Paris, France
- ERN-LUNG, Le Kremlin Bicêtre, Paris, France
| | - Anita Saxena
- Sharma University of Health Sciences, Haryana, New Delhi, India
| | - Zhi-Cheng Jing
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Karen Sliwa
- Cape Heart Institute, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
| | - Friedrich Thienemann
- Department of Medicine, Groote Schuur Hospital, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
- Department of Internal Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Simon Stewart
- Institute of Health Research, University of Notre Dame, Fremantle, Western Australia, Australia
| |
Collapse
|
10
|
Zheng Y, Yuan P, Zhang Z, Fu Y, Li S, Ruan Y, Li P, Chen Y, Feng W, Zheng X. Fatty Oil of Descurainia Sophia Nanoparticles Improve Monocrotaline-Induced Pulmonary Hypertension in Rats Through PLC/IP3R/Ca 2+ Signaling Pathway. Int J Nanomedicine 2023; 18:7483-7503. [PMID: 38090366 PMCID: PMC10714987 DOI: 10.2147/ijn.s436866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Purpose Fatty oil of Descurainia Sophia (OIL) has poor stability and low solubility, which limits its pharmacological effects. We hypothesized that fatty oil nanoparticles (OIL-NPs) could overcome this limitation. The protective effect of OIL-NPs against monocrotaline-induced lung injury in rats was studied. Methods We prepared OIL-NPs by wrapping fatty oil with polylactic-polyglycolide nanoparticles (PLGA-NPs) and conducted in vivo and in vitro experiments to explore its anti-pulmonary hypertension (PH) effect. In vitro, we induced malignant proliferation of pulmonary artery smooth muscle cells (RPASMC) using anoxic chambers, and studied the effects of OIL-NPs on the malignant proliferation of RPASMC cells and phospholipase C (PLC)/inositol triphosphate receptor (IP3R)/Ca2+ signal pathways. In vivo, we used small animal echocardiography, flow cytometry, immunohistochemistry, western blotting (WB), polymerase chain reaction (PCR) and metabolomics to explore the effects of OIL-NPs on the heart and lung pathological damage and PLC/IP3R/Ca2+ signal pathway of pulmonary hypertension rats. Results We prepared fatty into OIL-NPs. In vitro, OIL-NPs could improve the mitochondrial function and inhibit the malignant proliferation of RPASMC cells by inhibiting the PLC/IP3R/Ca2+signal pathway. In vivo, OIL-NPs could reduce the pulmonary artery pressure of rats and alleviate the pathological injury and inflammatory reaction of heart and lung by inhibiting the PLC/IP3R/Ca2+ signal pathway. Conclusion OIL-NPs have anti-pulmonary hypertension effect, and the mechanism may be related to the inhibition of PLC/IP3R/Ca2+signal pathway.
Collapse
Affiliation(s)
- Yajuan Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, People’s Republic of China
| | - Peipei Yuan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, People’s Republic of China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, People’s Republic of China
| | - Zhenkai Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, People’s Republic of China
| | - Yang Fu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, People’s Republic of China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, People’s Republic of China
| | - Saifei Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, People’s Republic of China
| | - Yuan Ruan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, People’s Republic of China
| | - Panying Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, People’s Republic of China
| | - Yi Chen
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, People’s Republic of China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, People’s Republic of China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, People’s Republic of China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan province & Education Ministry of P. R. China, Zhengzhou, 450008, People’s Republic of China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450008, People’s Republic of China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, People’s Republic of China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan province & Education Ministry of P. R. China, Zhengzhou, 450008, People’s Republic of China
| |
Collapse
|
11
|
Masson B, Saint-Martin Willer A, Dutheil M, Penalva L, Le Ribeuz H, El Jekmek K, Ruchon Y, Cohen-Kaminsky S, Sabourin J, Humbert M, Mercier O, Montani D, Capuano V, Antigny F. Contribution of transient receptor potential canonical channels in human and experimental pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2023; 325:L246-L261. [PMID: 37366608 DOI: 10.1152/ajplung.00011.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is due to progressive distal pulmonary artery (PA) obstruction, leading to right ventricular hypertrophy and failure. Exacerbated store-operated Ca2+ entry (SOCE) contributes to PAH pathogenesis, mediating human PA smooth muscle cell (hPASMC) abnormalities. The transient receptor potential canonical channels (TRPC family) are Ca2+-permeable channels contributing to SOCE in different cell types, including PASMCs. However, the properties, signaling pathways, and contribution to Ca2+ signaling of each TRPC isoform are unclear in human PAH. We studied in vitro the impact of TRPC knockdown on control and PAH-hPASMCs function. In vivo, we analyzed the consequences of pharmacological TRPC inhibition using the experimental model of pulmonary hypertension (PH) induced by monocrotaline (MCT) exposure. Compared with control-hPASMCs cells, in PAH-hPASMCs, we found a decreased TRPC4 expression, overexpression of TRPC3 and TRPC6, and unchanged TRPC1 expression. Using the siRNA strategy, we found that the knockdown of TRPC1-C3-C4-C6 reduced the SOCE and the proliferation rate of PAH-hPASMCs. Only TRPC1 knockdown decreased the migration capacity of PAH-hPASMCs. After PAH-hPASMCs exposure to the apoptosis inducer staurosporine, TRPC1-C3-C4-C6 knockdown increased the percentage of apoptotic cells, suggesting that these channels promote apoptosis resistance. Only TRPC3 function contributed to exacerbated calcineurin activity. In the MCT-PH rat model, only TRPC3 protein expression was increased in lungs compared with control rats, and in vivo "curative" administration of a TRPC3 inhibitor attenuated PH development in rats. These results suggest that TRPC channels contribute to PAH-hPASMCs dysfunctions, including SOCE, proliferation, migration, and apoptosis resistance, and could be considered as therapeutic targets in PAH.NEW & NOTEWORTHY TRPC3 is increased in human and experimental pulmonary arterial hypertension (PAH). In PAH pulmonary arterial smooth muscle cells, TRPC3 participates in the aberrant store-operated Ca2+ entry contributing to their pathological cell phenotypes (exacerbated proliferation, enhanced migration, apoptosis resistance, and vasoconstriction). Pharmacological in vivo inhibition of TRPC3 reduces the development of experimental PAH. Even if other TRPC acts on PAH development, our results prove that TRPC3 inhibition could be considered as an innovative treatment for PAH.
Collapse
Affiliation(s)
- Bastien Masson
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Anais Saint-Martin Willer
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Mary Dutheil
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint-Joseph, Le Plessis Robinson, France
| | - Lucille Penalva
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Hélène Le Ribeuz
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Kristelle El Jekmek
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Yann Ruchon
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint-Joseph, Le Plessis Robinson, France
| | - Sylvia Cohen-Kaminsky
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Jessica Sabourin
- INSERM UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France
| | - Marc Humbert
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Olaf Mercier
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-Pulmonaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Le Plessis Robinson, France
| | - David Montani
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Véronique Capuano
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint-Joseph, Le Plessis Robinson, France
| | - Fabrice Antigny
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| |
Collapse
|
12
|
Balistrieri A, Makino A, Yuan JXJ. Pathophysiology and pathogenic mechanisms of pulmonary hypertension: role of membrane receptors, ion channels, and Ca 2+ signaling. Physiol Rev 2023; 103:1827-1897. [PMID: 36422993 PMCID: PMC10110735 DOI: 10.1152/physrev.00030.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
The pulmonary circulation is a low-resistance, low-pressure, and high-compliance system that allows the lungs to receive the entire cardiac output. Pulmonary arterial pressure is a function of cardiac output and pulmonary vascular resistance, and pulmonary vascular resistance is inversely proportional to the fourth power of the intraluminal radius of the pulmonary artery. Therefore, a very small decrease of the pulmonary vascular lumen diameter results in a significant increase in pulmonary vascular resistance and pulmonary arterial pressure. Pulmonary arterial hypertension is a fatal and progressive disease with poor prognosis. Regardless of the initial pathogenic triggers, sustained pulmonary vasoconstriction, concentric vascular remodeling, occlusive intimal lesions, in situ thrombosis, and vascular wall stiffening are the major and direct causes for elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension and other forms of precapillary pulmonary hypertension. In this review, we aim to discuss the basic principles and physiological mechanisms involved in the regulation of lung vascular hemodynamics and pulmonary vascular function, the changes in the pulmonary vasculature that contribute to the increased vascular resistance and arterial pressure, and the pathogenic mechanisms involved in the development and progression of pulmonary hypertension. We focus on reviewing the pathogenic roles of membrane receptors, ion channels, and intracellular Ca2+ signaling in pulmonary vascular smooth muscle cells in the development and progression of pulmonary hypertension.
Collapse
Affiliation(s)
- Angela Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- Harvard University, Cambridge, Massachusetts
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
13
|
Sabourin J, Beauvais A, Luo R, Montani D, Benitah JP, Masson B, Antigny F. The SOCE Machinery: An Unbalanced Knowledge between Left and Right Ventricular Pathophysiology. Cells 2022; 11:cells11203282. [PMID: 36291148 PMCID: PMC9600889 DOI: 10.3390/cells11203282] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/09/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Right ventricular failure (RVF) is the most important prognostic factor for morbidity and mortality in pulmonary arterial hypertension (PAH) or pulmonary hypertension (PH) caused by left heart diseases. However, right ventricle (RV) remodeling is understudied and not targeted by specific therapies. This can be partly explained by the lack of basic knowledge of RV remodeling. Since the physiology and hemodynamic function of the RV differ from those of the left ventricle (LV), the mechanisms of LV dysfunction cannot be generalized to that of the RV, albeit a knowledge of these being helpful to understanding RV remodeling and dysfunction. Store-operated Ca2+ entry (SOCE) has recently emerged to participate in the LV cardiomyocyte Ca2+ homeostasis and as a critical player in Ca2+ mishandling in a pathological context. In this paper, we highlight the current knowledge on the SOCE contribution to the LV and RV dysfunctions, as SOCE molecules are present in both compartments. he relative lack of studies on RV dysfunction indicates the necessity of further investigations, a significant challenge over the coming years.
Collapse
Affiliation(s)
- Jessica Sabourin
- Signalisation et Physiopathologie Cardiovasculaire, Inserm, Université Paris-Saclay, UMR-S 1180, 91400 Orsay, France
- Correspondence: (J.S.); (F.A.); Tel.: +(33)-180-006-302 (J.S.); +(33)-140-942-299 (F.A.)
| | - Antoine Beauvais
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Université Paris-Saclay, Inserm, UMR-S 999, 92350 Le Plessis-Robinson, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Rui Luo
- Signalisation et Physiopathologie Cardiovasculaire, Inserm, Université Paris-Saclay, UMR-S 1180, 91400 Orsay, France
| | - David Montani
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Université Paris-Saclay, Inserm, UMR-S 999, 92350 Le Plessis-Robinson, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Jean-Pierre Benitah
- Signalisation et Physiopathologie Cardiovasculaire, Inserm, Université Paris-Saclay, UMR-S 1180, 91400 Orsay, France
| | - Bastien Masson
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Université Paris-Saclay, Inserm, UMR-S 999, 92350 Le Plessis-Robinson, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Université Paris-Saclay, Inserm, UMR-S 999, 92350 Le Plessis-Robinson, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
- Correspondence: (J.S.); (F.A.); Tel.: +(33)-180-006-302 (J.S.); +(33)-140-942-299 (F.A.)
| |
Collapse
|
14
|
Masson B, Le Ribeuz H, Sabourin J, Laubry L, Woodhouse E, Foster R, Ruchon Y, Dutheil M, Boët A, Ghigna MR, De Montpreville VT, Mercier O, Beech DJ, Benitah JP, Bailey MA, Humbert M, Montani D, Capuano V, Antigny F. Orai1 Inhibitors as Potential Treatments for Pulmonary Arterial Hypertension. Circ Res 2022; 131:e102-e119. [PMID: 36164973 DOI: 10.1161/circresaha.122.321041] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is characterized by progressive distal pulmonary artery (PA) obstruction, leading to right ventricular hypertrophy and failure. Exacerbated intracellular calcium (Ca2+) signaling contributes to abnormalities in PA smooth muscle cells (PASMCs), including aberrant proliferation, apoptosis resistance, exacerbated migration, and arterial contractility. Store-operated Ca2+ entry is involved in Ca2+ homeostasis in PASMCs, but its properties in PAH are unclear. METHODS Using a combination of Ca2+ imaging, molecular biology, in vitro, ex vivo, and in vivo approaches, we investigated the roles of the Orai1 SOC channel in PA remodeling in PAH and determined the consequences of pharmacological Orai1 inhibition in vivo using experimental models of pulmonary hypertension (PH). RESULTS Store-operated Ca2+ entry and Orai1 mRNA and protein were increased in human PASMCs (hPASMCs) from patients with PAH (PAH-hPASMCs). We found that MEK1/2 (mitogen-activated protein kinase kinase 1/2), NFAT (nuclear factor of activated T cells), and NFκB (nuclear factor-kappa B) contribute to the upregulation of Orai1 expression in PAH-hPASMCs. Using small interfering RNA (siRNA) and Orai1 inhibitors, we found that Orai1 inhibition reduced store-operated Ca2+ entry, mitochondrial Ca2+ uptake, aberrant proliferation, apoptosis resistance, migration, and excessive calcineurin activity in PAH-hPASMCs. Orai1 inhibitors reduced agonist-evoked constriction in human PAs. In experimental rat models of PH evoked by chronic hypoxia, monocrotaline, or Sugen/hypoxia, administration of Orai1 inhibitors (N-{4-[3,5-bis(Trifluoromethyl)-1H-pyrazol-1-yl]phenyl}-4-methyl-1,2,3-thiadiazole-5-carboxamide [BTP2], 4-(2,5-dimethoxyphenyl)-N-[(pyridin-4-yl)methyl]aniline [JPIII], or 5J4) protected against PH. CONCLUSIONS In human PAH and experimental PH, Orai1 expression and activity are increased. Orai1 inhibition normalizes the PAH-hPASMCs phenotype and attenuates PH in rat models. These results suggest that Orai1 should be considered as a relevant therapeutic target for PAH.
Collapse
Affiliation(s)
- Bastien Masson
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France (B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,INSERM UMR_S 999 « Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France. B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.)
| | - Hélène Le Ribeuz
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France (B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,INSERM UMR_S 999 « Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France. B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.)
| | - Jessica Sabourin
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France (J.S., J.-P.B.)
| | - Loann Laubry
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France (B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,INSERM UMR_S 999 « Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France. B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (E.W., R.F., L.C., D.J.B., M.A.B.)
| | - Emily Woodhouse
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (E.W., R.F., L.C., D.J.B., M.A.B.)
| | - Richard Foster
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (E.W., R.F., L.C., D.J.B., M.A.B.)
| | - Yann Ruchon
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France (B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,INSERM UMR_S 999 « Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France. B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,Hôptal Marie Lannelongue, Groupe Hospitalier Paris Saint-Joseph, Le Plessis Robinson, France (Y.R., M.D., A.B., V.C.)
| | - Mary Dutheil
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France (B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,INSERM UMR_S 999 « Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France. B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,Hôptal Marie Lannelongue, Groupe Hospitalier Paris Saint-Joseph, Le Plessis Robinson, France (Y.R., M.D., A.B., V.C.)
| | - Angèle Boët
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France (B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,INSERM UMR_S 999 « Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France. B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,Hôptal Marie Lannelongue, Groupe Hospitalier Paris Saint-Joseph, Le Plessis Robinson, France (Y.R., M.D., A.B., V.C.)
| | - Maria-Rosa Ghigna
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France (B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,INSERM UMR_S 999 « Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France. B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.)
| | | | - Olaf Mercier
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-Pulmonaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Le Plessis Robinson, France (O.M.)
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (E.W., R.F., L.C., D.J.B., M.A.B.)
| | - Jean-Pierre Benitah
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France (J.S., J.-P.B.)
| | - Marc A Bailey
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (E.W., R.F., L.C., D.J.B., M.A.B.)
| | - Marc Humbert
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France (B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,INSERM UMR_S 999 « Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France. B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (M.H., D.M.)
| | - David Montani
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France (B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,INSERM UMR_S 999 « Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France. B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (M.H., D.M.)
| | - Véronique Capuano
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France (B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,INSERM UMR_S 999 « Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France. B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,Hôptal Marie Lannelongue, Groupe Hospitalier Paris Saint-Joseph, Le Plessis Robinson, France (Y.R., M.D., A.B., V.C.)
| | - Fabrice Antigny
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France (B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,INSERM UMR_S 999 « Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France. B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.)
| |
Collapse
|
15
|
Kudryashova TV, Goncharova EA. MonOrail to Cure? Targeting Orai1 to Reverse Pulmonary Arterial Hypertension. Circ Res 2022; 131:728-730. [PMID: 36252052 PMCID: PMC9586488 DOI: 10.1161/circresaha.122.321924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Tatiana V. Kudryashova
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis School of Medicine, Davis, CA, USA
| | - Elena A. Goncharova
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis School of Medicine, Davis, CA, USA
| |
Collapse
|
16
|
Antigny F. Role of Ion Channels in the Development of Pulmonary Arterial Hypertension. Biomolecules 2022; 12:1373. [PMID: 36291582 PMCID: PMC9599897 DOI: 10.3390/biom12101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an uncommon, progressive, and fatal disease [...].
Collapse
Affiliation(s)
- Fabrice Antigny
- INSERM UMR_S 999 «Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique», Hôpital Marie Lannelongue, 133, Avenue de la Résistance, F-92350 Le Plessis Robinson, France
| |
Collapse
|
17
|
Emodin activates BK channel in vascular smooth muscle cells and relaxes the interlobar renal artery of rat. Biomed Pharmacother 2022; 153:113452. [DOI: 10.1016/j.biopha.2022.113452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022] Open
|
18
|
Immunolocalization of zinc transporters and metallothioneins reveals links to microvascular morphology and functions. Histochem Cell Biol 2022; 158:485-496. [PMID: 35849202 PMCID: PMC9630201 DOI: 10.1007/s00418-022-02138-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
Abstract
Zinc homeostasis is vital to immune and other organ system functions, yet over a quarter of the world’s population is zinc deficient. Abnormal zinc transport or storage protein expression has been linked to diseases, such as cancer and chronic obstructive pulmonary disorder. Although recent studies indicate a role for zinc regulation in vascular functions and diseases, detailed knowledge of the mechanisms involved remains unknown. This study aimed to assess protein expression and localization of zinc transporters of the SLC39A/ZIP family (ZIPs) and metallothioneins (MTs) in human subcutaneous microvessels and to relate them to morphological features and expression of function-related molecules in the microvasculature. Microvessels in paraffin biopsies of subcutaneous adipose tissues from 14 patients undergoing hernia reconstruction surgery were analysed for 9 ZIPs and 3 MT proteins by MQCM (multifluorescence quantitative confocal microscopy). Zinc regulation proteins detected in human microvasculature included ZIP1, ZIP2, ZIP8, ZIP10, ZIP12, ZIP14 and MT1-3, which showed differential localization among endothelial and smooth muscle cells. ZIP1, ZIP2, ZIP12 and MT3 showed significantly (p < 0.05) increased immunoreactivities, in association with increased microvascular muscularization, and upregulated ET-1, α-SMA and the active form of p38 MAPK (Thr180/Tyr182 phosphorylated, p38 MAPK-P). These findings support roles of the zinc regulation system in microvascular physiology and diseases.
Collapse
|
19
|
Wei R, Chen L, Li P, Lin C, Zeng Q. IL-13 alleviates idiopathic pulmonary hypertension by inhibiting the proliferation of pulmonary artery smooth muscle cells and regulating macrophage infiltration. Am J Transl Res 2022; 14:4573-4590. [PMID: 35958460 PMCID: PMC9360879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Idiopathic pulmonary arterial hypertension (IPAH) is characterized by medial hypertrophy due to pulmonary artery smooth muscle cell (PASMC) hyperplasia. In the present study, we conducted bioinformatic analyses and cellular experiments to assess the involvement of the interleukin-13 (IL-13) in IPAH. METHODS The differentially expressed genes (DEGs) in IPAH and DEGs in IPAH caused by IL-13 treatment were screened using the GEO database. PPI networks were used to analyze the hub genes. Hypoxia-induced PASMCs were treated with IL-13 for in vitro assays. CCK8 and EdU staining were used to observe proliferation of PASMCs, and RT-qPCR was applied to detect the expression of hub genes. The conserved binding sites of microRNAs (miRNAs) in the 3'UTR of hub genes were investigated, and the regulatory relationships of the relevant miRNAs on their targets were verified by RT-qPCR and dual-luciferase assays. The GO and KEGG analyses were performed to study the downstream pathways. The effect of hub genes on immune cell infiltration in IPAH was investigated. RESULTS IL-13 altered gene expression in IPAH. IL-13 inhibited the proliferation and the expression of hub genes in PASMCs. The 3'UTR sites between HNRNPA2B1, HNRNPH1, SRSF1, HNRNPU and HNRNPA3 in the hub genes and candidate regulatory miRNAs were well conserved in humans. IL-13-mediated hub genes regulated multiple pathways and influenced immune cell infiltration. Hypoxia-induced PASMCs promoted the M2 polarization of macrophages, whereas IL-13-treated PASMCs skewed the macrophages toward M1 polarization. CONCLUSIONS IL-13-mediated alterations in hub genes inhibit PASMC proliferation and promote M1 macrophage infiltration in IPAH.
Collapse
Affiliation(s)
- Ruda Wei
- Hebei North UniversityZhangjiakou 075000, Hebei, P. R. China
| | - Liting Chen
- Hebei North UniversityZhangjiakou 075000, Hebei, P. R. China
- Department of Cardiovascular Medicine, Air force Medical Center, PLABeijing 100142, P. R. China
| | - Pengchuan Li
- Hebei North UniversityZhangjiakou 075000, Hebei, P. R. China
| | - Chaoyang Lin
- Department of Internal Medicine, Dachong Hospital of ZhongshanZhongshan 528476, Guangdong, P. R. China
| | - Qingshi Zeng
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinan 250011, Shandong, P. R. China
| |
Collapse
|
20
|
Role of Ion Channel Remodeling in Endothelial Dysfunction Induced by Pulmonary Arterial Hypertension. Biomolecules 2022; 12:biom12040484. [PMID: 35454073 PMCID: PMC9031742 DOI: 10.3390/biom12040484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Endothelial dysfunction is a key player in advancing vascular pathology in pulmonary arterial hypertension (PAH), a disease essentially characterized by intense remodeling of the pulmonary vasculature, vasoconstriction, endothelial dysfunction, inflammation, oxidative stress, and thrombosis in situ. These vascular features culminate in an increase in pulmonary vascular resistance, subsequent right heart failure, and premature death. Over the past years, there has been a great development in our understanding of pulmonary endothelial biology related to the genetic and molecular mechanisms that modulate the endothelial response to direct or indirect injury and how their dysregulation can promote PAH pathogenesis. Ion channels are key regulators of vasoconstriction and proliferative/apoptotic phenotypes; however, they are poorly studied at the endothelial level. The current review will describe and categorize different expression, functions, regulation, and remodeling of endothelial ion channels (K+, Ca2+, Na+, and Cl− channels) in PAH. We will focus on the potential pathogenic role of ion channel deregulation in the onset and progression of endothelial dysfunction during the development of PAH and its potential therapeutic role.
Collapse
|