1
|
Gupta S, Gupta AK, Mehan S, Khan Z, Gupta GD, Narula AS. Disruptions in cellular communication: Molecular interplay between glutamate/NMDA signalling and MAPK pathways in neurological disorders. Neuroscience 2025; 569:331-353. [PMID: 39809360 DOI: 10.1016/j.neuroscience.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/30/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Neurological disorders significantly impact the central nervous system, contributing to a growing public health crisis globally. The spectrum of these disorders includes neurodevelopmental and neurodegenerative diseases. This manuscript reviews the crucial roles of cellular signalling pathways in the pathophysiology of these conditions, focusing primarily on glutaminase/glutamate/NMDA receptor signalling, alongside the mitogen-activated protein kinase (MAPK) pathways-ERK1/2, C-JNK, and P38 MAPK. Activation of these pathways is often correlated with neuronal excitotoxicity, apoptosis, and inflammation, leading to many other pathological conditions such as traumatic brain injury, stroke, and brain tumor. The interplay between glutamate overstimulation and MAPK signalling exacerbates neurodegenerative processes, underscoring the complexity of cellular communication in maintaining neuronal health. Dysfunctional signalling alters synaptic plasticity and neuronal survival, contributing to cognitive impairments in various neurological diseases. The manuscript emphasizes the potential of targeting these signalling pathways for therapeutic interventions, promoting neuroprotection and reducing neuroinflammation. Incorporating insights from precision medicine and innovative drug delivery systems could enhance treatment efficacy. Overall, understanding the intricate mechanisms of these pathways is essential for developing effective strategies to mitigate the impact of neurological disorders and improve patient outcomes. This review highlights the necessity for further exploration into these signalling cascades to facilitate advancements in therapeutic approaches, ensuring better prognoses for individuals affected by neurological conditions.
Collapse
Affiliation(s)
- Sumedha Gupta
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Abhishek Kumar Gupta
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India. https://mehanneuroscience.org
| | - Zuber Khan
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
2
|
Aboul-Fotouh S, Zohny SM, Elnahas EM, Habib MZ, Hassan GA. Can memantine treat autism? Answers from preclinical and clinical studies. Neurosci Biobehav Rev 2025; 169:106019. [PMID: 39826825 DOI: 10.1016/j.neubiorev.2025.106019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/02/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Autism Spectrum Disorder (ASD) represents a clinical challenge due to its diverse behavioral symptoms and complex neuro-pathophysiology. Finding effective treatments that target the fundamental mechanisms of ASD remains a top priority. This narrative review presents the potential of the NMDA-receptor blocker memantine in managing ASD symptoms. Preclinical studies indicate that memantine could abrogate excitotoxicity, GABA/glutamate imbalance, reduced levels of brain-derived neurotrophic factor (BDNF), blood-brain barrier (BBB) leakage, and neuroinflammation, offering hope for managing core deficits associated with ASD like impaired social interaction and repetitive behaviors. However, clinical trials yield conflicting results, with some showing slight improvements in symptom severity and cognitive function, while others demonstrate limited efficacy. Further exploration of memantine's neurobiological mechanisms and refinement of treatment approaches are crucial for comprehensively tackling ASD complexities. Drawing from both animal models and clinical data, this review examines memantine's impact on core ASD symptoms, cognitive function, and potential mechanisms of action. Lastly, it identifies research gaps and proposes avenues for future investigations to enhance our understanding and utilization of memantine in ASD management.
Collapse
Affiliation(s)
- Sawsan Aboul-Fotouh
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sohir M Zohny
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Esraa M Elnahas
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Z Habib
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Basic Medical Sciences Department, Faculty of Medicine, King Salman International University, El Tor, South Sinai, Egypt.
| | - Ghada Am Hassan
- Neuropsychiatry Department, Faculty of Medicine, Galala University, Suez, Egypt; Neuropsychiatry Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Deutsch SI, Burket JA, Elikan J, Spiegel DR. Translational Neuroscience Contributes to Understanding Neurodevelopmental Outcomes of Dostoyevsky's "Brothers Karamazov" With Treatment Implications. Clin Neuropharmacol 2024; 47:181-188. [PMID: 39404154 DOI: 10.1097/wnf.0000000000000610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
ABSTRACT Dostoyevsky's novels raise profound ethical, moral, philosophical and theological issues and, as a result, both he and his novels serve as fertile subjects of scholarly inquiry across a variety of academic disciplines. In particular, major characters in "The Brothers Karamazov" lend themselves to classical psychodynamic formulations, such as the influence of adverse childhood experiences on adult social and occupational outcomes, which in the case of Dmitry, the eldest son of Fyodor Pavlovich Karamazov, are considered in exquisitely fine detail. Prosecutor and defense attorney provide differing interpretations of how early traumas, largely due to paternal neglect and abuse, affected Dmitry's adult outcome in the climactic trial over his alleged patricide. The novel also captures an extreme, and perhaps fanciful, description of an Oedipal rivalry between Dmitry and his father for the affection of a love interest leading to tragic and unpredictable consequences for both. The novel has been dissected by scholars across a variety of diverse and seemingly unrelated disciplines and continues to serve as a springboard for collaborative discussion. Re-reading the novel led the authors to wonder if translational developments in clinical neuroscience could further understanding of poor developmental trajectories of the novel's characters, as well as offer therapeutic recommendations for promoting more favorable occupational and social outcomes. Advances in basic neuroscience have been translated into actionable individualized, interdisciplinary, multimodal treatment plans leading to improved functional outcomes for children like Dmitry, Ivan, and Smerdyakov. Translational neuroscience enriches understanding of neurodevelopmental outcomes of characters in Dostoyevsky's novel "The Brothers Karamazov," especially in the context of genetic risk and in utero environmental insults.
Collapse
Affiliation(s)
- Stephen I Deutsch
- Department of Psychiatry and Behavioral Science, Eastern Virginia Medical School, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA
| | - Jessica A Burket
- Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, VA
| | | | - David R Spiegel
- Department of Psychiatry and Behavioral Science, Eastern Virginia Medical School, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, VA
| |
Collapse
|
4
|
Kim H, Choi S, Lee E, Koh W, Lee CJ. Tonic NMDA Receptor Currents in the Brain: Regulation and Cognitive Functions. Biol Psychiatry 2024; 96:164-175. [PMID: 38490367 DOI: 10.1016/j.biopsych.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Synaptically localized NMDA receptors (NMDARs) play a crucial role in important cognitive functions by mediating synaptic transmission and plasticity. In contrast, a tonic NMDAR current, thought to be mediated by extrasynaptic NMDARs, has a less clear function. This review provides a comprehensive overview of tonic NMDAR currents, focusing on their roles in synaptic transmission/plasticity and their impact on cognitive functions and psychiatric disorders. We discuss the roles of 3 endogenous ligands (i.e., glutamate, glycine, and D-serine) and receptors in mediating tonic NMDAR currents and explore the diverse mechanisms that regulate tonic NMDAR currents. In light of recent controversies surrounding the source of D-serine, we highlight the recent findings suggesting that astrocytes release D-serine to modulate tonic NMDAR currents and control cognitive flexibility. Furthermore, we propose distinct roles of neuronal and astrocytic D-serine in different locations and their implications for synaptic regulation and cognitive functions. The potential roles of tonic NMDAR currents in various psychiatric disorders, such as schizophrenia and autism spectrum disorder, are discussed in the context of the NMDAR hypofunction hypothesis. By presenting the mechanisms by which various cells, particularly astrocytes, regulate tonic NMDAR currents, we aim to stimulate future research in NMDAR hypofunction- or hyperfunction-related psychiatric disorders. This review not only provides a better understanding of the complex interplay between tonic NMDAR currents and cognitive functions but also sheds light on its potential therapeutic target for the treatment of various psychiatric disorders.
Collapse
Affiliation(s)
- Hayoung Kim
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science, Daejeon, South Korea
| | - Sunyeong Choi
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science, Daejeon, South Korea
| | - Euisun Lee
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science, Daejeon, South Korea
| | - Wuhyun Koh
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science, Daejeon, South Korea.
| | - C Justin Lee
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science, Daejeon, South Korea.
| |
Collapse
|
5
|
Pall ML. Central Causation of Autism/ASDs via Excessive [Ca 2+]i Impacting Six Mechanisms Controlling Synaptogenesis during the Perinatal Period: The Role of Electromagnetic Fields and Chemicals and the NO/ONOO(-) Cycle, as Well as Specific Mutations. Brain Sci 2024; 14:454. [PMID: 38790433 PMCID: PMC11119459 DOI: 10.3390/brainsci14050454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The roles of perinatal development, intracellular calcium [Ca2+]i, and synaptogenesis disruption are not novel in the autism/ASD literature. The focus on six mechanisms controlling synaptogenesis, each regulated by [Ca2+]i, and each aberrant in ASDs is novel. The model presented here predicts that autism epidemic causation involves central roles of both electromagnetic fields (EMFs) and chemicals. EMFs act via voltage-gated calcium channel (VGCC) activation and [Ca2+]i elevation. A total of 15 autism-implicated chemical classes each act to produce [Ca2+]i elevation, 12 acting via NMDA receptor activation, and three acting via other mechanisms. The chronic nature of ASDs is explained via NO/ONOO(-) vicious cycle elevation and MeCP2 epigenetic dysfunction. Genetic causation often also involves [Ca2+]i elevation or other impacts on synaptogenesis. The literature examining each of these steps is systematically examined and found to be consistent with predictions. Approaches that may be sed for ASD prevention or treatment are discussed in connection with this special issue: The current situation and prospects for children with ASDs. Such approaches include EMF, chemical avoidance, and using nutrients and other agents to raise the levels of Nrf2. An enriched environment, vitamin D, magnesium, and omega-3s in fish oil may also be helpful.
Collapse
Affiliation(s)
- Martin L Pall
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
6
|
Matrisciano F. Functional foods and neuroinflammation: Focus on autism spectrum disorder and schizophrenia. FUNCTIONAL FOODS AND CHRONIC DISEASE 2024:213-230. [DOI: 10.1016/b978-0-323-91747-6.00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Mabry S, Wilson EN, Bradshaw JL, Gardner JJ, Fadeyibi O, Vera E, Osikoya O, Cushen SC, Karamichos D, Goulopoulou S, Cunningham RL. Sex and age differences in social and cognitive function in offspring exposed to late gestational hypoxia. Biol Sex Differ 2023; 14:81. [PMID: 37951901 PMCID: PMC10640736 DOI: 10.1186/s13293-023-00557-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Gestational sleep apnea is a hypoxic sleep disorder that affects 8-26% of pregnancies and increases the risk for central nervous system dysfunction in offspring. Specifically, there are sex differences in the sensitivity of the fetal hippocampus to hypoxic insults, and hippocampal impairments are associated with social dysfunction, repetitive behaviors, anxiety, and cognitive impairment. Yet, it is unclear whether gestational sleep apnea impacts these hippocampal-associated functions and if sex and age modify these effects. To examine the relationship between gestational sleep apnea and hippocampal-associated behaviors, we used chronic intermittent hypoxia (CIH) to model late gestational sleep apnea in pregnant rats. We hypothesized that late gestational CIH would produce sex- and age-specific social, anxiety-like, repetitive, and cognitive impairments in offspring. METHODS Timed pregnant Long-Evans rats were exposed to CIH or room air normoxia from GD 15-19. Behavioral testing of offspring occurred during either puberty or young adulthood. To examine gestational hypoxia-induced behavioral phenotypes, we quantified hippocampal-associated behaviors (social function, repetitive behaviors, anxiety-like behaviors, and spatial memory and learning), hippocampal neuronal activity (glutamatergic NMDA receptors, dopamine transporter, monoamine oxidase-A, early growth response protein 1, and doublecortin), and circulating hormones in offspring. RESULTS Late gestational CIH induced sex- and age-specific differences in social, repetitive, and memory functions in offspring. In female pubertal offspring, CIH impaired social function, increased repetitive behaviors, and elevated circulating corticosterone levels but did not impact memory. In contrast, CIH transiently induced spatial memory dysfunction in pubertal male offspring but did not impact social or repetitive functions. Long-term effects of gestational CIH on social behaviors were only observed in female offspring, wherein CIH induced social disengagement and suppression of circulating corticosterone levels in young adulthood. No effects of gestational CIH were observed in anxiety-like behaviors, hippocampal neuronal activity, or circulating testosterone and estradiol levels, regardless of sex or age of offspring. CONCLUSIONS Our results indicate that hypoxia-associated pregnancy complications during late gestation can increase the risk for behavioral and physiological outcomes in offspring, such as social dysfunction, repetitive behaviors, and cognitive impairment, that are dependent on sex and age.
Collapse
Affiliation(s)
- Steve Mabry
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - E Nicole Wilson
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Jessica L Bradshaw
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Jennifer J Gardner
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Oluwadarasimi Fadeyibi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Edward Vera
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Oluwatobiloba Osikoya
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Spencer C Cushen
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Dimitrios Karamichos
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science, Fort Worth, TX, 76107, USA
| | - Styliani Goulopoulou
- Departments of Basic Sciences, Gynecology and Obstetrics, Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Rebecca L Cunningham
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA.
| |
Collapse
|
8
|
Hours CM, Gil S, Gressens P. Molecular and Cellular Insights: A Focus on Glycans and the HNK1 Epitope in Autism Spectrum Disorder. Int J Mol Sci 2023; 24:15139. [PMID: 37894820 PMCID: PMC10606426 DOI: 10.3390/ijms242015139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a synaptic disorder with a GABA/glutamate imbalance in the perineuronal nets and structural abnormalities such as increased dendritic spines and decreased long distance connections. Specific pregnancy disorders significantly increase the risk for an ASD phenotype such as preeclampsia, preterm birth, hypoxia phenomena, and spontaneous miscarriages. They are associated with defects in the glycosylation-immune placental processes implicated in neurogenesis. Some glycans epitopes expressed in the placenta, and specifically in the extra-villous trophoblast also have predominant functions in dendritic process and synapse function. Among these, the most important are CD57 or HNK1, CD22, CD24, CD33 and CD45. They modulate the innate immune cells at the maternal-fetal interface and they promote foeto-maternal tolerance. There are many glycan-based pathways of immunosuppression. N-glycosylation pathway dysregulation has been found to be associated with autoimmune-like phenotypes and maternal-autoantibody-related (MAR) autism have been found to be associated with central, systemic and peripheric autoimmune processes. Essential molecular pathways associated with the glycan-epitopes expression have been found to be specifically dysregulated in ASD, notably the Slit/Robo, Wnt, and mTOR/RAGE signaling pathways. These modifications have important effects on major transcriptional pathways with important genetic expression consequences. These modifications lead to defects in neuronal progenitors and in the nervous system's implementation specifically, with further molecular defects in the GABA/glutamate system. Glycosylation placental processes are crucial effectors for proper maternofetal immunity and endocrine/paracrine pathways formation. Glycans/ galectins expression regulate immunity and neurulation processes with a direct link with gene expression. These need to be clearly elucidated in ASD pathophysiology.
Collapse
Affiliation(s)
- Camille M Hours
- INSERM 1141, NeuroDiderot, Neuroprotection of the Developing Brain, Université Paris Cité, 75019 Paris, France
- Service de Psychiatrie de l'Enfant et de l'Adolescent, APHP, Hôpital Robert Debré, 75019 Paris, France
| | - Sophie Gil
- INSERM 1144, Therapeutics in Neuropsychopharmacology, Université Paris Cité, 75019 Paris, France
| | - Pierre Gressens
- INSERM 1141, NeuroDiderot, Neuroprotection of the Developing Brain, Université Paris Cité, 75019 Paris, France
- Neurologie Pédiatrique, APHP, Hôpital Robert Debré, 75019 Paris, France
| |
Collapse
|
9
|
Wang J, Gao Y, Xiao L, Lin Y, Huang L, Chen J, Liang G, Li W, Yi W, Lao J, Zhang B, Gao TM, Zhong M, Yang X. Increased NMDARs in neurons and glutamine synthetase in astrocytes underlying autistic-like behaviors of Gabrb1-/- mice. iScience 2023; 26:107476. [PMID: 37599823 PMCID: PMC10433130 DOI: 10.1016/j.isci.2023.107476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/16/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Mutations of the GABA-A receptor subunit β1 (GABRB1) gene are found in autism patients. However, it remains unclear how mutations in Gabrb1 may lead to autism. We generated Gabrb1-/- mouse model, which showed autistic-like behaviors. We carried out RNA-seq on the hippocampus and found glutamatergic pathway may be involved. We further carried out single-cell RNA sequencing on the whole brain followed by qRT-PCR, immunofluorescence, electrophysiology, and metabolite detection on specific cell types. We identified the up-regulated Glul/Slc38a3 in astrocytes, Grin1/Grin2b in neurons, glutamate, and the ratio of Glu/GABA in the hippocampus. Consistent with these results, increased NMDAR-currents and reduced GABAAR-currents in the CA1 neurons were detected in Gabrb1-/- mice. NMDAR antagonist memantine or Glul inhibitor methionine sulfoximine could rescue the abnormal behaviors in Gabrb1-/- mice. Our data reveal that upregulation of the glutamatergic synapse pathway, including NMDARs at neuronal synapses and glutamine exported by astrocytes, may lead to autistic-like behaviors.
Collapse
Affiliation(s)
- Jing Wang
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yue Gao
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Liuyan Xiao
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanmei Lin
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lang Huang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinfa Chen
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Guanmei Liang
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weiming Li
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenjuan Yi
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianpei Lao
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Bin Zhang
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Tian-Ming Gao
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mei Zhong
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xinping Yang
- Center for Genetics and Developmental Systems Biology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
10
|
Mabry S, Wilson EN, Bradshaw JL, Gardner JJ, Fadeyibi O, Vera E, Osikoya O, Cushen SC, Karamichos D, Goulopoulou S, Cunningham RL. Sex and age differences in social and cognitive function in offspring exposed to late gestational hypoxia. RESEARCH SQUARE 2023:rs.3.rs-2507737. [PMID: 37333114 PMCID: PMC10275064 DOI: 10.21203/rs.3.rs-2507737/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background Gestational sleep apnea affects 8-26% of pregnancies and can increase the risk for autism spectrum disorder (ASD) in offspring. ASD is a neurodevelopmental disorder associated with social dysfunction, repetitive behaviors, anxiety, and cognitive impairment. To examine the relationship between gestational sleep apnea and ASD-associated behaviors, we used a chronic intermittent hypoxia (CIH) protocol between gestational days (GD) 15-19 in pregnant rats to model late gestational sleep apnea. We hypothesized that late gestational CIH would produce sex- and age-specific social, mood, and cognitive impairments in offspring. Methods Timed pregnant Long-Evans rats were exposed to CIH or room air normoxia from GD 15-19. Behavioral testing of offspring occurred during either puberty or young adulthood. To examine ASD-associated phenotypes, we quantified ASD-associated behaviors (social function, repetitive behaviors, anxiety-like behaviors, and spatial memory and learning), hippocampal activity (glutamatergic NMDA receptors, dopamine transporter, monoamine oxidase-A, EGR-1, and doublecortin), and circulating hormones in offspring. Results Late gestational CIH induced sex- and age-specific differences in social, repetitive and memory functions in offspring. These effects were mostly transient and present during puberty. In female pubertal offspring, CIH impaired social function, increased repetitive behaviors, and increased circulating corticosterone levels, but did not impact memory. In contrast, CIH transiently induced spatial memory dysfunction in pubertal male offspring but did not impact social or repetitive functions. Long-term effects of gestational CIH were only observed in female offspring, wherein CIH induced social disengagement and suppression of circulating corticosterone levels in young adulthood. No effects of gestational CIH were observed on anxiety-like behaviors, hippocampal activity, circulating testosterone levels, or circulating estradiol levels, regardless of sex or age of offspring. Conclusions Our results indicate that hypoxia-associated pregnancy complications during late gestation can increase the risk for ASD-associated behavioral and physiological outcomes, such as pubertal social dysfunction, corticosterone dysregulation, and memory impairments.
Collapse
Affiliation(s)
- Steve Mabry
- UNTHSC: University of North Texas Health Science Center
| | | | | | | | | | - Edward Vera
- UNTHSC: University of North Texas Health Science Center
| | | | | | | | | | | |
Collapse
|
11
|
Wang L, Wang B, Wu C, Wang J, Sun M. Autism Spectrum Disorder: Neurodevelopmental Risk Factors, Biological Mechanism, and Precision Therapy. Int J Mol Sci 2023; 24:ijms24031819. [PMID: 36768153 PMCID: PMC9915249 DOI: 10.3390/ijms24031819] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous, behaviorally defined neurodevelopmental disorder. Over the past two decades, the prevalence of autism spectrum disorders has progressively increased, however, no clear diagnostic markers and specifically targeted medications for autism have emerged. As a result, neurobehavioral abnormalities, neurobiological alterations in ASD, and the development of novel ASD pharmacological therapy necessitate multidisciplinary collaboration. In this review, we discuss the development of multiple animal models of ASD to contribute to the disease mechanisms of ASD, as well as new studies from multiple disciplines to assess the behavioral pathology of ASD. In addition, we summarize and highlight the mechanistic advances regarding gene transcription, RNA and non-coding RNA translation, abnormal synaptic signaling pathways, epigenetic post-translational modifications, brain-gut axis, immune inflammation and neural loop abnormalities in autism to provide a theoretical basis for the next step of precision therapy. Furthermore, we review existing autism therapy tactics and limits and present challenges and opportunities for translating multidisciplinary knowledge of ASD into clinical practice.
Collapse
|
12
|
Deutsch SI, Burket JA. From Mouse to Man: N-Methyl-d-Aspartic Acid Receptor Activation as a Promising Pharmacotherapeutic Strategy for Autism Spectrum Disorders. Med Clin North Am 2023; 107:101-117. [PMID: 36402493 DOI: 10.1016/j.mcna.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The BALB/c mouse displays hypersensitivity to behavioral effects of MK-801 (dizocilpine), a noncompetitive N-methyl-d-aspartic acid (NMDA) receptor "open-channel" blocker, and shows both no preference for an enclosed stimulus mouse over an inanimate object and reduced social interaction with a freely behaving stimulus mouse. NMDA receptor agonist interventions improved measures of social preference and social interaction of the BALB/c mouse model of autism spectrum disorder (ASD). A "proof of principle/proof of concept" translational 10-week clinical trial with 8-week of active medication administration was conducted comparing 20 DSM-IV-TR-diagnosed older adolescent/young adult patients with ASD randomized to once-weekly pulsed administration (50 mg/d) versus daily administration of d-cycloserine (50 mg/d). The results showed that d-cycloserine, a partial glycine agonist, was well tolerated, the 2 dosing strategies did not differ, and improvement was noted on the "lethargy/social withdrawal" and "stereotypic behavior" subscales of the Aberrant Behavior Checklist. NMDA receptor activation contributes to the regulation of mTOR signaling, a pathologic point of convergence in several monogenic syndromic forms of ASD. Furthermore, both NMDA receptor hypofunction and imbalance between NMDA receptor activation mediated by GluN2B and GluN2A-containing NMDA receptors occur as "downstream" consequences of several genetically unrelated abnormalities associated with ASD. NMDA receptor-subtype selective "positive allosteric modulators (PAMs)" are particularly appealing medication candidates for future translational trials.
Collapse
Affiliation(s)
- Stephen I Deutsch
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, 825 Fairfax Avenue, Suite 710, Norfolk, VA 23507, USA
| | - Jessica A Burket
- Department of Molecular Biology & Chemistry, Christopher Newport University, 1 Avenue of the Arts, Newport News, VA 23606, USA.
| |
Collapse
|
13
|
Wang Y, Meng W, Liu Z, An Q, Hu X. Cognitive impairment in psychiatric diseases: Biomarkers of diagnosis, treatment, and prevention. Front Cell Neurosci 2022; 16:1046692. [DOI: 10.3389/fncel.2022.1046692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Psychiatric diseases, such as schizophrenia, bipolar disorder, autism spectrum disorder, and major depressive disorder, place a huge health burden on society. Cognitive impairment is one of the core characteristics of psychiatric disorders and a vital determinant of social function and disease recurrence in patients. This review thus aims to explore the underlying molecular mechanisms of cognitive impairment in major psychiatric disorders and identify valuable biomarkers for diagnosis, treatment and prevention of patients.
Collapse
|
14
|
Bove M, Schiavone S, Tucci P, Sikora V, Dimonte S, Colia AL, Morgese MG, Trabace L. Ketamine administration in early postnatal life as a tool for mimicking Autism Spectrum Disorders core symptoms. Prog Neuropsychopharmacol Biol Psychiatry 2022; 117:110560. [PMID: 35460811 DOI: 10.1016/j.pnpbp.2022.110560] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/23/2022]
Abstract
Autism Spectrum Disorders (ASD) core symptoms include deficits of social interaction, stereotyped behaviours, dysfunction in language and communication. Beyond them, several additional symptoms, such as cognitive impairment, anxiety-like states and hyperactivity are often occurring, mainly overlapping with other neuropsychiatric diseases. To untangle mechanisms underlying ASD etiology, and to identify possible pharmacological approaches, different factors, such as environmental, immunological and genetic ones, need to be considered. In this context, ASD animal models, aiming to reproduce the wide range of behavioural phenotypes of this uniquely human disorder, represent a very useful tool. Ketamine administration in early postnatal life of mice has already been studied as a suitable animal model resembling psychotic-like symptoms. Here, we investigated whether ketamine administration, at postnatal days 7, 9 and 11, might induce behavioural features able to mimic ASD typical symptoms in adult mice. To this aim, we developed a 4-days behavioural tests battery, including Marble Burying, Hole Board, Olfactory and Social tests, to assess repetitive and stereotyped behaviour, social deficits and anxiety-like symptoms. Moreover, by using this mouse model, we performed neurochemical and biomolecular analyses, quantifying neurotransmitters belonging to excitatory-inhibitory pathways, such as glutamate, glutamine and gamma-aminobutyric acid (GABA), as well as immune activation biomarkers related to ASD, such as CD11b and glial fibrillary acidic protein (GFAP), in the hippocampus and amygdala. Possible alterations in levels of brain-derived neurotrophic factor (BDNF) expression in the hippocampus and amygdala were also evaluated. Our results showed an increase in stereotyped behaviours, together with social impairments and anxiety-like behaviour in adult mice, receiving ketamine administration in early postnatal life. In addition, we found decreased BDNF and enhanced GFAP hippocampal expression levels, accompanied by elevations in glutamate amount, as well as reduction in GABA content in amygdala and hippocampus. In conclusion, early ketamine administration may represent a suitable animal model of ASD, exhibiting face validity to mimic specific ASD symptoms, such as social deficits, repetitive repertoire and anxiety-like behaviour.
Collapse
Affiliation(s)
- Maria Bove
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Vladyslav Sikora
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy; Department of Pathology, Sumy State University, Sumy, Ukraine
| | - Stefania Dimonte
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Anna Laura Colia
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| |
Collapse
|
15
|
Roychaudhuri R, Snyder SH. Mammalian D-cysteine: A novel regulator of neural progenitor cell proliferation: Endogenous D-cysteine, the stereoisomer with rapid spontaneous in vitro racemization rate, has major neural roles: Endogenous D-cysteine, the stereoisomer with rapid spontaneous in vitro racemization rate, has major neural roles. Bioessays 2022; 44:e2200002. [PMID: 35484375 DOI: 10.1002/bies.202200002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022]
Abstract
D-amino acids are being recognized as functionally important molecules in mammals. We recently identified endogenous D-cysteine in mammalian brain. D-cysteine is present in neonatal brain in substantial amounts (mM) and decreases with postnatal development. D-cysteine binds to MARCKS and a host of proteins implicated in cell division and neurodevelopmental disorders. D-cysteine decreases phosphorylation of MARCKS in neural progenitor cells (NPCs) affecting its translocation. D-cysteine controls NPC proliferation by inhibiting AKT signaling. Exogenous D-cysteine inhibits AKT phosphorylation at Thr 308 and Ser 473 in NPCs. D-cysteine treatment of NPCs led to 50% reduction in phosphorylation of Foxo1 at Ser 256 and Foxo3a at Ser 253. We hypothesize that in the developing brain endogenous D-cysteine is as a physiologic regulator of NPC proliferation by inhibiting AKT signaling mediated by Foxo1 and Foxo3a. Endogenous D-cysteine may regulate mammalian neurodevelopment with roles in schizophrenia and Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Robin Roychaudhuri
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Solomon H Snyder
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|