1
|
Gibert MK, Zhang Y, Saha S, Marcinkiewicz P, Dube C, Hudson K, Sun Y, Bednarek S, Chagari B, Sarkar A, Roig-Laboy C, Neace N, Saoud K, Setiady I, Hanif F, Schiff D, Kumar P, Kefas B, Hafner M, Abounader R. A comprehensive analysis of Transcribed Ultra Conserved Regions uncovers important regulatory functions of novel non-coding transcripts in gliomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.12.557444. [PMID: 38562826 PMCID: PMC10983853 DOI: 10.1101/2023.09.12.557444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Transcribed Ultra-Conserved Regions (TUCRs) represent a severely understudied class of putative non-coding RNAs (ncRNAs) that are 100% conserved across multiple species. We performed the first-ever analysis of TUCRs in glioblastoma (GBM) and low-grade gliomas (LGG). We leveraged large human datasets to identify the genomic locations, chromatin accessibility, transcription, differential expression, correlation with survival, and predicted functions of all 481 TUCRs, and identified TUCRs that are relevant to glioma biology. Of these, we investigated the expression, function, and mechanism of action of the most highly upregulated intergenic TUCR, uc.110, identifying it as a new tumor enhancer. Uc.110 was highly overexpressed in GBM and LGG, where it promoted malignancy and tumor growth. Uc.110 activated the WNT pathway by upregulating the expression of membrane frizzled-related protein (MFRP), by sponging the tumor suppressor microRNA miR-544. This pioneering study shows important roles for TUCRs in gliomas and provides an extensive database and novel methods for future TUCR research.
Collapse
|
2
|
Gibert MK, Zhang Y, Saha S, Marcinkiewicz P, Dube C, Hudson K, Sun Y, Bednarek S, Chagari B, Sarkar A, Roig-Laboy C, Neace N, Saoud K, Setiady I, Hanif F, Schiff D, Kumar P, Kefas B, Hafner M, Abounader R. A first comprehensive analysis of Transcribed Ultra Conserved Regions uncovers important regulatory functions of novel non-coding transcripts in gliomas. RESEARCH SQUARE 2024:rs.3.rs-4164642. [PMID: 38699302 PMCID: PMC11065071 DOI: 10.21203/rs.3.rs-4164642/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Transcribed Ultra-Conserved Regions (TUCRs) represent a severely understudied class of putative non-coding RNAs (ncRNAs) that are 100% conserved across multiple species. We performed the first-ever analysis of TUCRs in glioblastoma (GBM) and low-grade gliomas (LGG). We leveraged large human datasets to identify the genomic locations, chromatin accessibility, transcription, differential expression, correlation with survival, and predicted functions of all 481 TUCRs, and identified TUCRs that are relevant to glioma biology. Of these, we investigated the expression, function, and mechanism of action of the most highly upregulated intergenic TUCR, uc.110, identifying it as a new oncogene. Uc.110 was highly overexpressed in GBM and LGG, where it promoted malignancy and tumor growth. Uc.110 activated the WNT pathway by upregulating the expression of membrane frizzled-related protein (MFRP), by sponging the tumor suppressor microRNA miR-544. This pioneering study shows important roles for TUCRs in gliomas and provides an extensive database and novel methods for future TUCR research.
Collapse
Affiliation(s)
- Myron K Gibert
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Ying Zhang
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Shekhar Saha
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Pawel Marcinkiewicz
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Collin Dube
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Kadie Hudson
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Yunan Sun
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Sylwia Bednarek
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Bilhan Chagari
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Aditya Sarkar
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Christian Roig-Laboy
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Natalie Neace
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Karim Saoud
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Initha Setiady
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Farina Hanif
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - David Schiff
- University of Virginia Department of Neurology, Charlottesville, VA, 22908, USA
| | - Pankaj Kumar
- University of Virginia Department of Public Health Sciences and Bioinformatics Core, Charlottesville, VA, 22908, USA
| | | | | | - Roger Abounader
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
- University of Virginia Department of Neurology, Charlottesville, VA, 22908, USA
- University of Virginia Department of Cancer Center, Charlottesville, VA, 22908, USA
| |
Collapse
|
3
|
de Oliveira JC. Transcribed Ultraconserved Regions: New regulators in cancer signaling and potential biomarkers. Genet Mol Biol 2023; 46:e20220125. [PMID: 36622962 PMCID: PMC9829027 DOI: 10.1590/1678-4685-gmb-2022-0125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/06/2022] [Indexed: 01/11/2023] Open
Abstract
The ultraconserved regions (UCRs) are 481 genomic elements, longer than 200 bp, 100% conserved in human, mouse, and rat genomes. Usually, coding regions are more conserved, but more than 80% of UCRs are either intergenic or intronic, and many of them produce long non-coding RNAs (lncRNAs). Recently, the deregulated expression of transcribed UCRs (T-UCRs) has been associated with pathological conditions. But, differently from many lncRNAs with recognized crucial effects on malignant cell processes, the role of T-UCRs in the control of cancer cell networks is understudied. Furthermore, the potential utility of these molecules as molecular markers is not clear. Based on this information, the present review aims to organize information about T-UCRs with either oncogenic or tumor suppressor role associated with cancer cell signaling, and better describe T-UCRs with potential utility as prognosis markers. Out of 481 T-UCRs, 297 present differential expression in cancer samples, 23 molecules are associated with tumorigenesis processes, and 12 have more clear potential utility as prognosis markers. In conclusion, T-UCRs are deregulated in several tumor types, highlighted as important molecules in cancer networks, and with potential utility as prognosis markers, although further investigation for translational medicine is still needed.
Collapse
|