1
|
Cattaneo C, Pagonabarraga J. Sex Differences in Parkinson's Disease: A Narrative Review. Neurol Ther 2025; 14:57-70. [PMID: 39630386 PMCID: PMC11762054 DOI: 10.1007/s40120-024-00687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/14/2024] [Indexed: 01/27/2025] Open
Abstract
Sex differences in epidemiology, clinical features, and therapeutical responses are emerging in several movement disorders, even though they are still not widely recognized. Parkinson's disease (PD) is not an exception: men and women suffering from PD have different levels of disability. Research has been performed using multiple databases and scientific journals; this review summarizes the available evidence on sex differences in PD regarding epidemiology, risk factors, genetics, clinical phenotype, social impact, and therapeutic management. The role of hormones in determining such differences is also briefly discussed. The results confirm the existence of differences between men and women in PD; women have a higher risk of developing disabling motor complications and non-motor fluctuations compared to men, while men have a higher risk of developing cognitive impairment, postural instability, and gait disorders. Improving our knowledge in these differences may result in the implementation of strategies for disease-tailored treatment and management.
Collapse
|
2
|
Granata I, Maddalena L, Manzo M, Guarracino MR, Giordano M. HELP: A computational framework for labelling and predicting human common and context-specific essential genes. PLoS Comput Biol 2024; 20:e1012076. [PMID: 39331694 PMCID: PMC11463781 DOI: 10.1371/journal.pcbi.1012076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/09/2024] [Accepted: 08/19/2024] [Indexed: 09/29/2024] Open
Abstract
Machine learning-based approaches are particularly suitable for identifying essential genes as they allow the generation of predictive models trained on features from multi-source data. Gene essentiality is neither binary nor static but determined by the context. The databases for essential gene annotation do not permit the personalisation of the context, and their update can be slower than the publication of new experimental data. We propose HELP (Human Gene Essentiality Labelling & Prediction), a computational framework for labelling and predicting essential genes. Its double scope allows for identifying genes based on dependency or not on experimental data. The effectiveness of the labelling method was demonstrated by comparing it with other approaches in overlapping the reference sets of essential gene annotations, where HELP demonstrated the best compromise between false and true positive rates. The gene attributes, including multi-omics and network embedding features, lead to high-performance prediction of essential genes while confirming the existence of essentiality nuances.
Collapse
Affiliation(s)
- Ilaria Granata
- Institute for High-Performance Computing and Networking, National Research Council, Naples, Italy
| | - Lucia Maddalena
- Institute for High-Performance Computing and Networking, National Research Council, Naples, Italy
| | - Mario Manzo
- Information Technology Services, University of Naples “L’Orientale”, Naples, Italy
| | - Mario Rosario Guarracino
- Laboratory of Algorithms and Technologies for Network Analysis, National Research University Higher School of Economics, Nizhny Novgorod, Russia
- Department of Economics and Law, University of Cassino and Southern Lazio, Cassino, Frosinone, Italy
| | - Maurizio Giordano
- Institute for High-Performance Computing and Networking, National Research Council, Naples, Italy
| |
Collapse
|
3
|
He Y, Li R, Yu Y, Huang C, Xu Z, Wang T, Chen M, Huang H, Qi Z. Human neural stem cells promote mitochondrial genesis to alleviate neuronal damage in MPTP-induced cynomolgus monkey models. Neurochem Int 2024; 175:105700. [PMID: 38417589 DOI: 10.1016/j.neuint.2024.105700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/01/2024]
Abstract
Currently, there is no effective treatment for Parkinson's disease (PD), and the regenerative treatment of neural stem cells (NSCs) is considered the most promising method. This study aimed to investigate the protective effect and mechanism of NSCs on neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced cynomolgus monkey (Macaca fascicularis) model of PD. We first found that injecting NSCs into the subarachnoid space relieved motor dysfunction in PD cynomolgus monkeys, as well as reduced dopaminergic neuron loss and neuronal damage in the substantia nigra (SN) and striatum. Besides, NSCs decreased 17-estradiol (E2) level, an estrogen, in the cerebrospinal fluid (CSF) of PD cynomolgus monkeys, which shows NSCs may provide neuro-protection by controlling estrogen levels in the CSF. Furthermore, NSCs elevated proliferator-activated receptor gamma coactivator-1 alpha (PGC-1a), mitofusin 2 (MFN2), and optic atrophy 1 (OPA1) expression, three genes mediating mitochondrial biogenesis, in the SN and striatum of PD monkeys. In addition, NSCs suppress reactive oxygen species (ROS) production caused by MPTP, as well as mitochondrial autophagy, therefore preserving dopaminergic neurons. In summary, our findings show that NSCs may preserve dopaminergic and neuronal cells in an MPTP-induced PD cynomolgus monkey model. These protective benefits might be attributed to NSCs' ability of modulating estrogen balance, increasing mitochondrial biogenesis, and limiting oxidative stress and mitochondrial autophagy. These findings add to our understanding of the mechanism of NSC treatment and shed light on further clinical treatment options.
Collapse
Affiliation(s)
- Ying He
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China; The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, 545007, China
| | - Ruicheng Li
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yuxi Yu
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Chusheng Huang
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530004, China
| | - Zhiran Xu
- Translational Medicine Research Center, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
| | - Tianbao Wang
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Ming Chen
- Jinjiang Municipal Hospital (Shanghai Sixth People's Hospital Fujian Campus), Quanzhou, Fujian, 362200, China
| | - Hongri Huang
- Guangxi Taimei Rensheng Biotechnology Co., Ltd., Nanning, Guangxi, 530011, China
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
4
|
Righetto I, Gasparotto M, Casalino L, Vacca M, Filippini F. Exogenous Players in Mitochondria-Related CNS Disorders: Viral Pathogens and Unbalanced Microbiota in the Gut-Brain Axis. Biomolecules 2023; 13:biom13010169. [PMID: 36671555 PMCID: PMC9855674 DOI: 10.3390/biom13010169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Billions of years of co-evolution has made mitochondria central to the eukaryotic cell and organism life playing the role of cellular power plants, as indeed they are involved in most, if not all, important regulatory pathways. Neurological disorders depending on impaired mitochondrial function or homeostasis can be caused by the misregulation of "endogenous players", such as nuclear or cytoplasmic regulators, which have been treated elsewhere. In this review, we focus on how exogenous agents, i.e., viral pathogens, or unbalanced microbiota in the gut-brain axis can also endanger mitochondrial dynamics in the central nervous system (CNS). Neurotropic viruses such as Herpes, Rabies, West-Nile, and Polioviruses seem to hijack neuronal transport networks, commandeering the proteins that mitochondria typically use to move along neurites. However, several neurological complications are also associated to infections by pandemic viruses, such as Influenza A virus and SARS-CoV-2 coronavirus, representing a relevant risk associated to seasonal flu, coronavirus disease-19 (COVID-19) and "Long-COVID". Emerging evidence is depicting the gut microbiota as a source of signals, transmitted via sensory neurons innervating the gut, able to influence brain structure and function, including cognitive functions. Therefore, the direct connection between intestinal microbiota and mitochondrial functions might concur with the onset, progression, and severity of CNS diseases.
Collapse
Affiliation(s)
- Irene Righetto
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, via Ugo Bassi, 58/B, 35131 Padua, Italy
| | - Matteo Gasparotto
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, via Ugo Bassi, 58/B, 35131 Padua, Italy
| | - Laura Casalino
- Institute of Genetics and Biophysics “A. Buzzati Traverso”, CNR, via Pietro Castellino, 111, 80131 Naples, Italy
| | - Marcella Vacca
- Institute of Genetics and Biophysics “A. Buzzati Traverso”, CNR, via Pietro Castellino, 111, 80131 Naples, Italy
- Correspondence: (M.V.); (F.F.)
| | - Francesco Filippini
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, via Ugo Bassi, 58/B, 35131 Padua, Italy
- Correspondence: (M.V.); (F.F.)
| |
Collapse
|