1
|
Zhuang J, Liu S, Du GF, Fang Z, Wu J, Li N, Zhong T, Xu J, He QY, Sun X. YjgM is a crotonyltransferase critical for polymyxin resistance of Escherichia coli. Cell Rep 2024; 43:114161. [PMID: 38678561 DOI: 10.1016/j.celrep.2024.114161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/02/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
Lysine crotonylation has attracted widespread attention in recent years. However, little is known about bacterial crotonylation, particularly crotonyltransferase and decrotonylase, and its effects on antibiotic resistance. Our study demonstrates the ubiquitous presence of crotonylation in E. coli, which promotes bacterial resistance to polymyxin. We identify the crotonyltransferase YjgM and its regulatory pathways in E. coli with a focus on crotonylation. Further studies show that YjgM upregulates the crotonylation of the substrate protein PmrA, thereby boosting PmrA's affinity for binding to the promoter of eptA, which, in turn, promotes EptA expression and confers polymyxin resistance in E. coli. Additionally, we discover that PmrA's crucial crotonylation site and functional site is Lys 164. These significant discoveries highlight the role of crotonylation in bacterial drug resistance and offer a fresh perspective on creating antibacterial compounds.
Collapse
Affiliation(s)
- Jianpeng Zhuang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Shiqin Liu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Gao-Fei Du
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China; Key Laboratory of Laboratory Diagnostics, Medical Technology School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zuye Fang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jiayi Wu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Nan Li
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Tairan Zhong
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jiayi Xu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Xuesong Sun
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
2
|
Schweitzer-Stenner R, Kurbaj R, O'Neill N, Andrews B, Shah R, Urbanc B. Conformational Manifold Sampled by Two Short Linear Motif Segments Probed by Circular Dichroism, Vibrational, and Nuclear Magnetic Resonance Spectroscopy. Biochemistry 2023; 62:2571-2586. [PMID: 37595285 DOI: 10.1021/acs.biochem.3c00212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Disordered protein segments called short linear motifs (SLiM) serve as recognition sites for a variety of biological processes and act as targeting signals, modification, and ligand binding sites. While SLiMs do not adopt one of the known regular secondary structures, the conformational distribution might still reflect the structural propensities of their amino acid residues and possible interactions between them. In the past, conformational analyses of short peptides provided compelling evidence for the notion that individual residues are less conformationally flexible than locally expected for a random coil. Here, we combined various spectroscopies (NMR, IR, vibrational, and UV circular dichroism) to determine the Ramachandran plots of two SLiM motifs, i.e., GRRDSG and GRRTSG. They are two representatives of RxxS motifs that are capable of being phosphorylated by protein kinase A, an enzyme that plays a fundamental role in a variety of biological processes. Our results reveal that the nearest and non-nearest interactions between residues cause redistributions between polyproline II and β-strand basins while concomitantly stabilizing extended relative to turn-forming and helical structures. They also cause shifts in basin positions. With increasing temperature, β-strand populations become more populated at the expense of polyproline II. While molecular dynamics simulations with Amber ff14SB and CHARMM 36m force fields indicate residue-residue interactions, they do not account for the observed structural changes.
Collapse
Affiliation(s)
| | - Raghed Kurbaj
- Department of Chemistry, Drexel University, Philadelphia, PA19104Pennsylvania,United States
| | - Nichole O'Neill
- Department of Chemistry, Drexel University, Philadelphia, PA19104Pennsylvania,United States
| | - Brian Andrews
- Department of Physics, Drexel University, Philadelphia,PA19104Pennsylvania,United States
| | - Riya Shah
- Department of Physics, Drexel University, Philadelphia,PA19104Pennsylvania,United States
| | - Brigita Urbanc
- Department of Physics, Drexel University, Philadelphia,PA19104Pennsylvania,United States
| |
Collapse
|
3
|
Schweitzer-Stenner R. The relevance of short peptides for an understanding of unfolded and intrinsically disordered proteins. Phys Chem Chem Phys 2023; 25:11908-11933. [PMID: 37096579 DOI: 10.1039/d3cp00483j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Over the last thirty years the unfolded state of proteins has attracted considerable interest owing to the discovery of intrinsically disordered proteins which perform a plethora of functions despite resembling unfolded proteins to a significant extent. Research on both, unfolded and disordered proteins has revealed that their conformational properties can deviate locally from random coil behavior. In this context results from work on short oligopeptides suggest that individual amino acid residues sample the sterically allowed fraction of the Ramachandran plot to a different extent. Alanine has been found to exhibit a peculiarity in that it has a very high propensity for adopting polyproline II like conformations. This Perspectives article reviews work on short peptides aimed at exploring the Ramachandran distributions of amino acid residues in different contexts with experimental and computational means. Based on the thus provided overview the article discussed to what extent short peptides can serve as tools for exploring unfolded and disordered proteins and as benchmarks for the development of a molecular dynamics force field.
Collapse
|
4
|
Schweitzer-Stenner R. Exploring Nearest Neighbor Interactions and Their Influence on the Gibbs Energy Landscape of Unfolded Proteins and Peptides. Int J Mol Sci 2022; 23:ijms23105643. [PMID: 35628453 PMCID: PMC9147007 DOI: 10.3390/ijms23105643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
The Flory isolated pair hypothesis (IPH) is one of the corner stones of the random coil model, which is generally invoked to describe the conformational dynamics of unfolded and intrinsically disordered proteins (IDPs). It stipulates, that individual residues sample the entire sterically allowed space of the Ramachandran plot without exhibiting any correlations with the conformational dynamics of its neighbors. However, multiple lines of computational, bioinformatic and experimental evidence suggest that nearest neighbors have a significant influence on the conformational sampling of amino acid residues. This implies that the conformational entropy of unfolded polypeptides and proteins is much less than one would expect based on the Ramachandran plots of individual residues. A further implication is that the Gibbs energies of residues in unfolded proteins or polypeptides are not additive. This review provides an overview of what is currently known and what has yet to be explored regarding nearest neighbor interactions in unfolded proteins.
Collapse
|