1
|
Rodríguez Rondón AV, Welling MS, van den Akker ELT, van Rossum EFC, Boon EMJ, van Haelst MM, Delhanty PJD, Visser JA. MC4R Variants Modulate α-MSH and Setmelanotide Induced Cellular Signaling at Multiple Levels. J Clin Endocrinol Metab 2024; 109:2452-2466. [PMID: 38567654 PMCID: PMC11403317 DOI: 10.1210/clinem/dgae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/10/2024] [Indexed: 04/04/2024]
Abstract
CONTEXT The melanocortin-4 receptor (MC4R) plays an important role in body weight regulation. Pathogenic MC4R variants are the most common cause of monogenic obesity. OBJECTIVE We have identified 17 MC4R variants in adult and pediatric patients with obesity. Here we aimed to functionally characterize these variants by analyzing 4 different aspects of MC4R signaling. In addition, we aimed to analyze the effect of setmelanotide, a potent MC4R agonist, on these MC4R variants. MATERIALS AND METHODS Cell surface expression and α-melanocyte stimulating hormone (α-MSH)- or setmelanotide-induced cAMP response, β-arrestin-2 recruitment, and ERK activation were measured in cells expressing either wild type or variant MC4R. RESULTS We found a large heterogeneity in the function of these variants. We identified variants with a loss of response for all studied MC4R signaling, variants with no cAMP accumulation or ERK activation but normal β-arrestin-2 recruitment, and variants with normal cAMP accumulation and ERK activation but decreased β-arrestin-2 recruitment, indicating disrupted desensitization and signaling mechanisms. Setmelanotide displayed a greater potency and similar efficacy as α-MSH and induced significantly increased maximal cAMP responses of several variants compared to α-MSH. Despite the heterogeneity in functional response, there was no apparent difference in the obesity phenotype in our patients. CONCLUSION We show that these obesity-associated MC4R variants affect MC4R signaling differently yet lead to a comparable clinical phenotype. Our results demonstrate the clinical importance of assessing the effect of MC4R variants on a range of molecular signaling mechanisms to determine their association with obesity, which may aid in improving personalized treatment.
Collapse
Affiliation(s)
- Alejandra V Rodríguez Rondón
- Obesity Center CGG and Expertise Center Genetic Obesity, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Mila S Welling
- Obesity Center CGG and Expertise Center Genetic Obesity, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Department of Pediatrics, Division of Endocrinology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Erica L T van den Akker
- Obesity Center CGG and Expertise Center Genetic Obesity, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Department of Pediatrics, Division of Endocrinology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Elisabeth F C van Rossum
- Obesity Center CGG and Expertise Center Genetic Obesity, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Elles M J Boon
- Department of Human Genetics, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Mieke M van Haelst
- Department of Human Genetics, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Patric J D Delhanty
- Obesity Center CGG and Expertise Center Genetic Obesity, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Jenny A Visser
- Obesity Center CGG and Expertise Center Genetic Obesity, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
2
|
Anthofer L, Gmach P, Uretmen Kagiali ZC, Kleinau G, Rotter J, Opitz R, Scheerer P, Beck-Sickinger AG, Wolf P, Biebermann H, Bechmann I, Kühnen P, Krude H, Paisdzior S. Melanocortin-4 Receptor PLC Activation Is Modulated by an Interaction with the Monocarboxylate Transporter 8. Int J Mol Sci 2024; 25:7565. [PMID: 39062808 PMCID: PMC11277258 DOI: 10.3390/ijms25147565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
The melanocortin-4 receptor (MC4R) is a key player in the hypothalamic leptin-melanocortin pathway that regulates satiety and hunger. MC4R belongs to the G protein-coupled receptors (GPCRs), which are known to form heterodimers with other membrane proteins, potentially modulating receptor function or characteristics. Like MC4R, thyroid hormones (TH) are also essential for energy homeostasis control. TH transport across membranes is facilitated by the monocarboxylate transporter 8 (MCT8), which is also known to form heterodimers with GPCRs. Based on the finding in single-cell RNA-sequencing data that both proteins are simultaneously expressed in hypothalamic neurons, we investigated a putative interplay between MC4R and MCT8. We developed a novel staining protocol utilizing a fluorophore-labeled MC4R ligand and demonstrated a co-localization of MC4R and MCT8 in human brain tissue. Using in vitro assays such as BRET, IP1, and cAMP determination, we found that MCT8 modulates MC4R-mediated phospholipase C activation but not cAMP formation via a direct interaction, an effect that does not require a functional MCT8 as it was not altered by a specific MCT8 inhibitor. This suggests an extended functional spectrum of MCT8 as a GPCR signaling modulator and argues for the investigation of further GPCR-protein interactions with hitherto underrepresented physiological functions.
Collapse
Affiliation(s)
- Larissa Anthofer
- Institute of Experimental Pediatric Endocrinology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
- Institute of Anatomy, Leipzig University, D-04103 Leipzig, Germany
| | - Philipp Gmach
- Institute of Experimental Pediatric Endocrinology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| | - Zeynep Cansu Uretmen Kagiali
- Institute of Experimental Pediatric Endocrinology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| | - Gunnar Kleinau
- Group Structural Biology of Cellular Signaling, Institute of Medical Physics and Biophysics, Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| | - Jonas Rotter
- Institute of Anatomy, Leipzig University, D-04103 Leipzig, Germany
| | - Robert Opitz
- Institute of Experimental Pediatric Endocrinology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| | - Patrick Scheerer
- Group Structural Biology of Cellular Signaling, Institute of Medical Physics and Biophysics, Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| | | | - Philipp Wolf
- Faculty of Life Sciences, Institute of Biochemistry, Leipzig University, D-04103 Leipzig, Germany
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| | - Ingo Bechmann
- Institute of Anatomy, Leipzig University, D-04103 Leipzig, Germany
| | - Peter Kühnen
- Department for Pediatric Endocrinology and Diabetology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| | - Heiko Krude
- Institute of Experimental Pediatric Endocrinology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| | - Sarah Paisdzior
- Institute of Experimental Pediatric Endocrinology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, D-10117 Berlin, Germany
| |
Collapse
|
3
|
Wei R, Li D, Jia S, Chen Y, Wang J. MC4R in Central and Peripheral Systems. Adv Biol (Weinh) 2023; 7:e2300035. [PMID: 37043700 DOI: 10.1002/adbi.202300035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/25/2023] [Indexed: 04/14/2023]
Abstract
Obesity has emerged as a critical and urgent health burden during the current global pandemic. Among multiple genetic causes, melanocortin receptor-4 (MC4R), involved in food intake and energy metabolism regulation through various signaling pathways, has been reported to be the lead genetic factor in severe and early onset obesity and hyperphagia disorders. Most previous studies have illustrated the roles of MC4R signaling in energy intake versus expenditure in the central system, while some evidence indicates that MC4R is also expressed in peripheral systems, such as the gut and endocrine organs. However, its physiopathological function remains poorly defined. This review aims to depict the central and peripheral roles of MC4R in energy metabolism and endocrine hormone homeostasis, the diversity of phenotypes, biased downstream signaling caused by distinct MC4R mutations, and current drug development targeting the receptor.
Collapse
Affiliation(s)
- Ran Wei
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Danjie Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| | - Sheng Jia
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| |
Collapse
|
4
|
Matt RA, Westhorpe FG, Romuar RF, Rana P, Gever JR, Ford AP. Fingerprinting heterocellular β-adrenoceptor functional expression in the brain using agonist activity profiles. Front Mol Biosci 2023; 10:1214102. [PMID: 37664183 PMCID: PMC10471193 DOI: 10.3389/fmolb.2023.1214102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/05/2023] [Indexed: 09/05/2023] Open
Abstract
Noradrenergic projections from the brainstem locus coeruleus drive arousal, attentiveness, mood, and memory, but specific adrenoceptor (AR) function across the varied brain cell types has not been extensively characterized, especially with agonists. This study reports a pharmacological analysis of brain AR function, offering insights for innovative therapeutic interventions that might serve to compensate for locus coeruleus decline, known to develop in the earliest phases of neurodegenerative diseases. First, β-AR agonist activities were measured in recombinant cell systems and compared with those of isoprenaline to generate Δlog(Emax/EC50) values, system-independent metrics of agonist activity, that, in turn, provide receptor subtype fingerprints. These fingerprints were then used to assess receptor subtype expression across human brain cell systems and compared with Δlog(Emax/EC50) values arising from β-arrestin activation or measurements of cAMP response desensitization to assess the possibility of ligand bias among β-AR agonists. Agonist activity profiles were confirmed to be system-independent and, in particular, revealed β2-AR functional expression across several human brain cell types. Broad β2-AR function observed is consistent with noradrenergic tone arising from the locus coeruleus exerting heterocellular neuroexcitatory and homeostatic influence. Notably, Δlog(Emax/EC50) measurements suggest that tested β-AR agonists do not show ligand bias as it pertains to homologous receptor desensitization in the system examined. Δlog(Emax/EC50) agonist fingerprinting is a powerful means of assessing receptor subtype expression regardless of receptor expression levels or assay readout, and the method may be applicable to future use for novel ligands and tissues expressing any receptor with available reference agonists.
Collapse
|
5
|
Evaluation of Pharmacological Rescue of Melanocortin-4 Receptor Nonsense Mutations by Aminoglycoside. Life (Basel) 2022; 12:life12111793. [PMID: 36362948 PMCID: PMC9697516 DOI: 10.3390/life12111793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
The melanocortin-4 receptor (MC4R) is critical for central satiety regulation, therefore presenting a potent target for pharmacological obesity treatment. Melanocortin-4 receptor mutations prevalently cause monogenetic obesity. A possibility of overcoming stop mutations is aminoglycoside-mediated translational readthrough. Promising results were achieved in COS-7 cells, but data for human cell systems are still missing, so uncertainty surrounds this potential treatment. In transfected HEK-293 cells, we tested whether translational readthrough by aminoglycoside Geneticin combined with high-affinity ligand setmelanotide, which is effective in proopiomelanocortin or leptin receptor deficiency patients, is a treatment option for affected patients. Five MC4R nonsense mutants (W16X, Y35X_D37V, E61X, W258X, Q307X) were investigated. Confocal microscopy and cell surface expression assays revealed the importance of the mutations’ position within the MC4R. N-terminal mutants were marginally expressed independent of Geneticin treatment, whereas mutants with nonsense mutations in transmembrane helix 6 or helix 8 showed wild-type-like expression. For functional analysis, Gs and Gq/11 signaling were measured. N-terminal mutants (W16X, Y35X_D37V) showed no cAMP formation after challenge with alpha-MSH or setmelanotide, irrespective of Geneticin treatment. Similarly, Gs activation was almost impossible in W258X and Q307X with wild-type-like cell surface expression. Results for Gq/11 signaling were comparable. Based on our data, this approach improbably represents a therapeutic option.
Collapse
|