1
|
Liu Y, Ma J, Wang X, Liu P, Cai C, Han Y, Zeng S, Feng Z, Shen H. Lipophagy-related gene RAB7A is involved in immune regulation and malignant progression in hepatocellular carcinoma. Comput Biol Med 2023; 158:106862. [PMID: 37044053 DOI: 10.1016/j.compbiomed.2023.106862] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/05/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND RAB7A (RAS-related in Brain 7A) is an important member of the RAS oncogene family. However, the correlation between RAB7A and the development and immune infiltration of hepatocellular carcinoma (HCC) has rarely been studied. Here, we studied the role of RAB7A in HCC through bioinformatics analysis, real-world cohort validation, and in vitro experimental exploration. MATERIALS AND METHODS The RAB7A expression level was analyzed through TCGA, HPA and TISIDB databases. TIMER and TISCH were used to analyze the correlation between RAB7A and tumor immune microenvironment. The expression of RAB7A was detected through real-time PCR and western blotting. The cell proliferation was detected by EdU and CCK8. Wound-healing and transwell assays were used to test the invasion and migration ability. Cell cycle distribution and reactive oxygen species (ROS) content were analyzed by flow cytometry. Identification of epithelial-mesenchymal transition (EMT) was performed by immunofluorescence double staining. Immunohistochemistry (IHC) was used to evaluate the correlation between RAB7A and immune checkpoints. RESULTS RAB7A is upregulated in most of the tumor types, and the upregulation of RAB7A is associated with a poorer prognosis in many cancers. The results showed that RAB7A was significantly positively correlated with the infiltration of macrophages and cancer-associated fibroblasts (CAFs), but negatively correlated with M2-type macrophages in most tumors. The single-cell atlas also revealed the distribution and proportion of RAB7A in immune cells of HCC. The in vitro experiments suggested that RAB7A was increased in HCC tissue and cell lines. The knockdown of RAB7A inhibited the activation of the PIK3CA-AKT pathway and suppressed the expression of CDK4, CDK6 and CCNA2. Knockdown of RAB7A induced G0/G1 arrest and ROS accumulation in HCC. In addition, overexpression of RAB7A enhanced migration and invasion by inducing EMT. The real-world cohort showed that the expression level of RAB7A was positively correlated with the expression levels of TGFBR1 and PD-L1. CONCLUSIONS RAB7A may serve as a potential tumor prognostic and immune infiltration-related biomarker, predicting immunotherapy efficacy in certain cancer types, especially in HCC. Besides, RAB7A was a multi-pathway target involved in the malignant progression of HCC.
Collapse
Affiliation(s)
- Yongting Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Jiayao Ma
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Xinwen Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Ping Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Ziyang Feng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
2
|
Basta MD, Menko AS, Walker JL. PI3K Isoform-Specific Regulation of Leader and Follower Cell Function for Collective Migration and Proliferation in Response to Injury. Cells 2022; 11:3515. [PMID: 36359913 PMCID: PMC9658457 DOI: 10.3390/cells11213515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 07/29/2023] Open
Abstract
To ensure proper wound healing it is important to elucidate the signaling cues that coordinate leader and follower cell behavior to promote collective migration and proliferation for wound healing in response to injury. Using an ex vivo post-cataract surgery wound healing model we investigated the role of class I phosphatidylinositol-3-kinase (PI3K) isoforms in this process. Our findings revealed a specific role for p110α signaling independent of Akt for promoting the collective migration and proliferation of the epithelium for wound closure. In addition, we found an important role for p110α signaling in orchestrating proper polarized cytoskeletal organization within both leader and wounded epithelial follower cells to coordinate their function for wound healing. p110α was necessary to signal the formation and persistence of vimentin rich-lamellipodia extensions by leader cells and the reorganization of actomyosin into stress fibers along the basal domains of the wounded lens epithelial follower cells for movement. Together, our study reveals a critical role for p110α in the collective migration of an epithelium in response to wounding.
Collapse
Affiliation(s)
- Morgan D. Basta
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - A. Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Janice L. Walker
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|