1
|
Miorando D, Steffler AM, Vecchia CAD, Simomura VL, Veloso JJ, Buzatto MV, Nunes RKS, Somensi LB, Gutiérrez MV, Melim LISH, Pontes FMM, Silva LM, Veselinova A, González-Sánchez L, Jambrina PG, Junior WAR. Gastroprotective role of a flavonoid-rich subfraction from Fridericia chica (Bonpl.) L. G. Lohmann: a medicinal plant used in the Amazon region. Inflammopharmacology 2024:10.1007/s10787-024-01544-6. [PMID: 39126568 DOI: 10.1007/s10787-024-01544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
Fridericia chica is an Amazonian plant used to treat stomach disorders. However, the pharmacological activity of flavonoids in the extract has yet to be investigated. Therefore, we considered that a flavonoid-rich F. chica subfraction (FRS) has gastroprotective functions. For this, before the induction of gastric ulcers with ethanol or piroxicam, the rats received vehicle (water), omeprazole (30 mg/kg), or FRS (30 mg/kg), and the ulcer area was measured macro and microscopically, and the antisecretory action was investigated in pylorus-ligated rats. In addition, the roles of nitric oxide (NO) and nonprotein sulfhydryl compounds (NP-SH) in the gastroprotective effects of FRS were studied. FRS reduced ethanol- and piroxicam-induced ulcerations by 81% and 77%, respectively, as confirmed histologically. Antioxidant effects were observed for FRS through the maintenance of GSH and LPO levels, and the SOD and CAT activity similar to those found in the nonulcerated group. Moreover, FRS avoided the increase in MPO activity and TNF, IL-6, IL-4 and IL-10 levels. Moreover, mucin staining increased in ulcerated rats receiving FRS, and the pharmacological mechanism gastroprotective seems to involve the NO and NP-SH in addition to antisecretory actions. The chemical study by mass spectrometry confirmed the presence of flavonoids in FRS, and molecular docking studies have shown that these compounds interact with cyclooxygenase-1 and NO synthase. Furthermore, there was no indication that FRS had cytotoxic effects. Our results support the popular use of F. chica, and we conclude that the gastroprotection effect promoted by FRS can be attributed to the combined effect of the flavonoids.
Collapse
Affiliation(s)
- Daniela Miorando
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Amanda M Steffler
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Cristian A Dalla Vecchia
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Viviane L Simomura
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Jaqueline J Veloso
- Laboratory of Pharmacognosy, Community University of the Chapecó Region, Chapecó, SC, Brazil
| | - Maike V Buzatto
- Laboratory of Pharmacognosy, Community University of the Chapecó Region, Chapecó, SC, Brazil
| | - Ruan K S Nunes
- Postgraduate Program in Pharmaceutical Sciences, University of Vale Do Itajaí, Itajaí, SC, Brazil
| | - Lincon B Somensi
- Postgraduate Program in Development and Society, University of Alto Vale Do Rio Do Peixe, Caçador, SC, Brazil
| | - Max V Gutiérrez
- Department of Chemical, Biological and Agricultural Sciences, Universidad de Sonora, Navojoa Sonora, Mexico
| | | | | | - Luisa M Silva
- Laboratory of TGI Pharmacology and Interactions, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Anzhela Veselinova
- Department of Physical Chemistry, Faculty of Chemical Sciences, University of Salamanca, Salamanca, Spain
| | - Lola González-Sánchez
- Department of Physical Chemistry, Faculty of Chemical Sciences, University of Salamanca, Salamanca, Spain
| | - Pablo G Jambrina
- Department of Physical Chemistry, Faculty of Chemical Sciences, University of Salamanca, Salamanca, Spain
| | - Walter A Roman Junior
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil.
- Laboratory of Pharmacognosy, Community University of the Chapecó Region, Chapecó, SC, Brazil.
| |
Collapse
|
2
|
de Freitas Gomes A, Batalha ADDSJ, de Castro Alves CE, Galvão de Azevedo R, Rodriguez Amado JR, Pereira de Souza T, Koolen HHF, da Silva FMA, Chaves FCM, Florentino Neto S, Boechat AL, Soares Pontes G. Immunomodulatory and Anticancer Effects of Fridericia chica Extract-Loaded Nanocapsules in Myeloid Leukemia. Pharmaceutics 2024; 16:828. [PMID: 38931948 PMCID: PMC11207419 DOI: 10.3390/pharmaceutics16060828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Nanocapsules provide selective delivery and increase the bioavailability of bioactive compounds. In this study, we examined the anticancer and immunomodulatory potential of Fridericia chica (crajiru) extract encapsulated in nanocapsules targeting myeloid leukemias. Nanocapsules containing crajiru (nanocapsules-CRJ) were prepared via interfacial polymer deposition and solvent displacement. Size and polydispersity were measured by dynamic light scattering. Biological assays were performed on leukemia cell lines HL60 and K562 and on non-cancerous Vero cells and human PBMC. The anticancer activity was evaluated using cytotoxicity and clonogenic assays, while the immunomodulatory activity was evaluated by measuring the levels of pro- and anti-inflammatory cytokines in PBMC supernatants treated with concentrations of nanocapsules-CRJ. Nanocapsules-CRJ exhibited significant cytotoxic activity against HL60 and K562 cells at concentrations ranging from 0.75 to 50 μg/mL, with the greatest reductions in cell viability observed at 50 μg/mL (p < 0.001 for HL60; p < 0.01 for K562), while not affecting non-cancerous Vero cells and human PBMCs. At concentrations of 25 μg/mL and 50 μg/mL, nanocapsules-CRJ reduced the formation of HL60 and K562 colonies by more than 90% (p < 0.0001). Additionally, at a concentration of 12 μg/mL, nanocapsules-CRJ induced the production of the cytokines IL-6 (p = 0.0002), IL-10 (p = 0.0005), IL-12 (p = 0.001), and TNF-α (p = 0.005), indicating their immunomodulatory potential. These findings suggest that nanocapsules-CRJ hold promise as a potential therapeutic agent with both cytotoxic and immunomodulatory properties.
Collapse
Affiliation(s)
- Alice de Freitas Gomes
- Post-Graduate Program in Hematology, The State University of Amazon (UEA), Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-010, AM, Brazil;
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil; (C.E.d.C.A.); (R.G.d.A.)
| | - Adriane Dâmares de Souza Jorge Batalha
- Laboratory of Innovative Therapies, Federal University of Amazonas (UFAM)), Manaus 69077-000, AM, Brazil;
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas (UFAM), Manaus 69077-000, AM, Brazil
| | - Carlos Eduardo de Castro Alves
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil; (C.E.d.C.A.); (R.G.d.A.)
| | - Renata Galvão de Azevedo
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil; (C.E.d.C.A.); (R.G.d.A.)
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas (UFAM), Manaus 69077-000, AM, Brazil
| | - Jesus Rafael Rodriguez Amado
- Post-Graduate Program in Health Sciences, Faculty of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados 79825-070, MS, Brazil (S.F.N.)
| | - Tatiane Pereira de Souza
- Post-Graduate Program in Pharmaceutical Innovation, Federal University of Amazonas (UFAM)), Manaus 69077-000, AM, Brazil;
| | | | | | | | - Serafim Florentino Neto
- Post-Graduate Program in Health Sciences, Faculty of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados 79825-070, MS, Brazil (S.F.N.)
| | - Antônio Luiz Boechat
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas (UFAM), Manaus 69077-000, AM, Brazil
| | - Gemilson Soares Pontes
- Post-Graduate Program in Hematology, The State University of Amazon (UEA), Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-010, AM, Brazil;
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil; (C.E.d.C.A.); (R.G.d.A.)
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas (UFAM), Manaus 69077-000, AM, Brazil
| |
Collapse
|
3
|
Anselmo LT, de Souza TA, Brito TAM, Peres EG, da Silva FMA, Silva VR, Santos LDS, Soares MBP, Bezerra DP, Costa EV, Sipoloni VM, de Medeiros LS, da Silva MS, Tavares JF, Gomes WR, Koolen HHF. Pleonotoquinones, Cytotoxic Oxepinenaphthoquinones from Pleonotoma jasminifolia. JOURNAL OF NATURAL PRODUCTS 2024; 87:1217-1221. [PMID: 38630559 DOI: 10.1021/acs.jnatprod.3c01191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Two unusual naphthoquinones, named here as pleonotoquinones A (1) and B (2), were isolated along with two known anthraquinones (3 and 4) via chromatographic separations of an ethyl acetate extract of the roots of Pleonotoma jasminifolia. Compounds 1 and 2 are the first examples of quinones bearing a 2-methyloxepine moiety. The compounds were isolated with the aid of mass spectrometry and molecular networking, and their structures were resolved using 1D and 2D NMR and HRESIMS data. The isolated compounds were evaluated for their antiproliferative activity against human cancer cell lines, and compounds 1 and 2 displayed cytotoxicity against human colon cancer HCT116 cells (IC50 = 2.6 μM for compound 1 and IC50 = 4.3 μM for compound 2) and human liver cancer HepG2 cells (IC50 = 1.9 μM for compound 1 and IC50 = 6.4 μM for compound 2).
Collapse
Affiliation(s)
- Leandro T Anselmo
- Superior School of Health Sciences, University of the State of Amazonas, Manaus 69065001, Brazil
| | - Thalisson A de Souza
- Multi-User Laboratory for Characterization and Analysis, Program of Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Thiago A M Brito
- Multi-User Laboratory for Characterization and Analysis, Program of Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Eldrinei G Peres
- Superior School of Health Sciences, University of the State of Amazonas, Manaus 69065001, Brazil
| | - Felipe M A da Silva
- Postgraduate Program in Chemistry, Department of Chemistry, Federal University of Amazonas, Manaus 69080-900, Brazil
| | - Valdenizia R Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador 40296-710, Brazil
| | - Luciano de S Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador 40296-710, Brazil
| | - Milena B P Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador 40296-710, Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador 40296-710, Brazil
| | - Emmanoel V Costa
- Postgraduate Program in Chemistry, Department of Chemistry, Federal University of Amazonas, Manaus 69080-900, Brazil
| | - Victor M Sipoloni
- Department of Chemistry, Federal University of São Paulo, Diadema 09972-270, Brazil
| | - Lívia S de Medeiros
- Department of Chemistry, Federal University of São Paulo, Diadema 09972-270, Brazil
| | - Marcelo S da Silva
- Multi-User Laboratory for Characterization and Analysis, Program of Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Josean F Tavares
- Multi-User Laboratory for Characterization and Analysis, Program of Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Waldireny R Gomes
- Faculty of Pharmaceutical Sciences, Federal University of Amazonas, Manaus 69067-005, Brazil
| | - Hector H F Koolen
- Superior School of Health Sciences, University of the State of Amazonas, Manaus 69065001, Brazil
| |
Collapse
|
4
|
Picheta N, Piekarz J, Burdan O, Satora M, Tarkowski R, Kułak K. Phytotherapy of Vulvovaginal Candidiasis: A Narrative Review. Int J Mol Sci 2024; 25:3796. [PMID: 38612606 PMCID: PMC11012191 DOI: 10.3390/ijms25073796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Vulvovaginal candidiasis (VVC) is a real gynecological problem among women of reproductive age from 15 to 49. A recent analysis showed that 75% of women will have an occurrence at least once per year, while 5% are observed to have recurrent vaginal mycosis-these patients may become unwell four or more times a year. This pathology is caused in 85-90% of cases by fungi of the Candida albicans species. It represents an intractable medical problem for female patients due to pain and pruritus. Due to the observation of an increasing number of strains resistant to standard preparations and an increase in the recurrence of this pathology when using local or oral preferential therapy, such as fluconazole, an analysis was launched to develop alternative methods of treating VVC using herbs such as dill, turmeric, and berberine. An in-depth analysis of databases that include scientific articles from recent years made it possible to draw satisfactory conclusions supporting the validity of herbal therapy for the pathology in question. Although phytotherapy has not yet been approved by the Food and Drug Administration, it appears to be a promising therapeutic solution for strains that are resistant to existing treatments. There is research currently undergoing aimed at comparing classical pharmacotherapy and herbal therapy in the treatment of vaginal candidiasis for the purpose of increasing medical competence and knowledge for the care of the health and long-term comfort of gynecological patients.
Collapse
Affiliation(s)
- Natalia Picheta
- Student’s Scientific Association at the I Chair and Department of Gynaecological Oncology and Gynaecology, Medical University of Lublin, Staszica 16 Str., 20-081 Lublin, Poland; (N.P.); (J.P.); (O.B.); (M.S.)
| | - Julia Piekarz
- Student’s Scientific Association at the I Chair and Department of Gynaecological Oncology and Gynaecology, Medical University of Lublin, Staszica 16 Str., 20-081 Lublin, Poland; (N.P.); (J.P.); (O.B.); (M.S.)
| | - Oliwia Burdan
- Student’s Scientific Association at the I Chair and Department of Gynaecological Oncology and Gynaecology, Medical University of Lublin, Staszica 16 Str., 20-081 Lublin, Poland; (N.P.); (J.P.); (O.B.); (M.S.)
| | - Małgorzata Satora
- Student’s Scientific Association at the I Chair and Department of Gynaecological Oncology and Gynaecology, Medical University of Lublin, Staszica 16 Str., 20-081 Lublin, Poland; (N.P.); (J.P.); (O.B.); (M.S.)
| | - Rafał Tarkowski
- I Chair and Department of Gynaecological Oncology and Gynaecology, Medical University of Lublin, Staszica 16 Str., 20-081 Lublin, Poland;
| | - Krzysztof Kułak
- I Chair and Department of Gynaecological Oncology and Gynaecology, Medical University of Lublin, Staszica 16 Str., 20-081 Lublin, Poland;
| |
Collapse
|
5
|
de Melo Pereira DÍ, Gurgel RS, de Souza ATF, Matias RR, de Souza Falcão L, Chaves FCM, da Silva GF, Martínez JG, de Lima Procópio RE, Fantin C, Albuquerque PM. Isolation and Identification of Pigment-Producing Endophytic Fungi from the Amazonian Species Fridericia chica. J Fungi (Basel) 2024; 10:77. [PMID: 38276023 PMCID: PMC10821134 DOI: 10.3390/jof10010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Pigments of fungal origin have aroused increasing interest in the food dye and cosmetic industries since the global demand for natural dyes has grown. Endophytic microorganisms are a source of bioactive compounds, and Amazonian plant species can harbor fungi with a wide range of biotechnological applications. Popularly known in Brazil as crajiru, Fridericia chica is a medicinal plant that produces a red pigment. In this study, a total of 121 fungi were isolated in potato dextrose agar from three plants. We identified nine pigment-producing endophytic fungi isolated from branches and leaves of F. chica. The isolates that showed pigment production in solid media were molecularly identified via multilocus analysis as Aspergillus welwitschiae, A. sydowii, Curvularia sp., Diaporthe cerradensis (two strains), Hypoxylon investiens, Neoscytalidium sp. (two strains) and Penicillium rubens. These isolates were subjected to submerged fermentation in two culture media to obtain metabolic extracts. The extracts obtained were analyzed in terms of their absorbance between 400 and 700 nm. The pigmented extract produced by H. investiens in medium containing yeast extract showed maximum absorbance in the red absorption range (UA700 = 0.550) and significant antioxidant and antimicrobial activity. This isolate can thus be considered a new source of extracellular pigment.
Collapse
Affiliation(s)
- Dorothy Ívila de Melo Pereira
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69050-010, Brazil; (D.Í.d.M.P.); (R.S.G.)
- Grupo de Pesquisa Química Aplicada à Tecnologia, Escola Superior de Tecnologia, Universidade do Estado do Amazonas, Manaus 69050-020, Brazil; (A.T.F.d.S.); (R.R.M.); (L.d.S.F.); (R.E.d.L.P.)
| | - Raiana Silveira Gurgel
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69050-010, Brazil; (D.Í.d.M.P.); (R.S.G.)
- Grupo de Pesquisa Química Aplicada à Tecnologia, Escola Superior de Tecnologia, Universidade do Estado do Amazonas, Manaus 69050-020, Brazil; (A.T.F.d.S.); (R.R.M.); (L.d.S.F.); (R.E.d.L.P.)
| | - Anne Terezinha Fernandes de Souza
- Grupo de Pesquisa Química Aplicada à Tecnologia, Escola Superior de Tecnologia, Universidade do Estado do Amazonas, Manaus 69050-020, Brazil; (A.T.F.d.S.); (R.R.M.); (L.d.S.F.); (R.E.d.L.P.)
- Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69050-010, Brazil;
| | - Rosiane Rodrigues Matias
- Grupo de Pesquisa Química Aplicada à Tecnologia, Escola Superior de Tecnologia, Universidade do Estado do Amazonas, Manaus 69050-020, Brazil; (A.T.F.d.S.); (R.R.M.); (L.d.S.F.); (R.E.d.L.P.)
| | - Lucas de Souza Falcão
- Grupo de Pesquisa Química Aplicada à Tecnologia, Escola Superior de Tecnologia, Universidade do Estado do Amazonas, Manaus 69050-020, Brazil; (A.T.F.d.S.); (R.R.M.); (L.d.S.F.); (R.E.d.L.P.)
| | | | | | - José Gregorio Martínez
- Grupo de Investigación Biociencias, Institución Universitaria Colegio Mayor de Antioquia, Medellin 050001, Colombia;
| | - Rudi Emerson de Lima Procópio
- Grupo de Pesquisa Química Aplicada à Tecnologia, Escola Superior de Tecnologia, Universidade do Estado do Amazonas, Manaus 69050-020, Brazil; (A.T.F.d.S.); (R.R.M.); (L.d.S.F.); (R.E.d.L.P.)
- Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69050-010, Brazil;
| | - Cleiton Fantin
- Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69050-010, Brazil;
- Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69050-010, Brazil
| | - Patrícia Melchionna Albuquerque
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69050-010, Brazil; (D.Í.d.M.P.); (R.S.G.)
- Grupo de Pesquisa Química Aplicada à Tecnologia, Escola Superior de Tecnologia, Universidade do Estado do Amazonas, Manaus 69050-020, Brazil; (A.T.F.d.S.); (R.R.M.); (L.d.S.F.); (R.E.d.L.P.)
- Programa de Pós-Graduação em Biotecnologia e Recursos Naturais da Amazônia, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69050-010, Brazil;
- Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69050-010, Brazil
| |
Collapse
|
6
|
Figueiredo FDF, Damazo AS, Arunachalam K, Silva MJD, Pavan E, Lima JCDS, Martins DTDO. Evaluation of the gastroprotective and ulcer healing properties by Fridericia chica (Bonpl.) L.G. Lohmann hydroethanolic extract of leaves. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116338. [PMID: 36870462 DOI: 10.1016/j.jep.2023.116338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fridericia chica (Bonpl.) L.G. Lohmann (Bignoniaceae), is a climber native to Brazil, found in all Brazilian biomes. It is mostly known in Brazil as "carajiru," and home medicines made from the leaves have been used to cure disorders including stomach ulcers and other gastrointestinal disorders. AIM OF THE STUDY The objective of the study was to investigate the F. chica hydroethanolic extract of leaves (HEFc) preventative and curative antiulcer gastrointestinal efficacy as well as the mechanisms of action using in vivo rodent models. MATERIALS AND METHODS F. chica was collected in the municipality of Juína, Mato Grosso, and its leaves were used to prepare the extract by maceration technique (70% hydroethanol in the 1:10 ratio, w/v) to obtain the HEFc. The chromatographic analysis of HEFc was carried out by High Performance Liquid Chromatography-Photo Diode Array-Electrospray Ionization-Mass Spectrometry (HPLC-PDA-ESI-MS)- LCQ Fleet™ system. To determine the potential antiulcer potential of HEFc (1, 5 and 20 mg/kg, p.o.), the gastroprotective activity was assessed in various animal models of stomach ulcers caused by acidified ethanol, water constraint stress, indomethacin, (acute), and acid acetic (chronic). Additionally, the prokinetic properties of the HEFC were assessed in mice. The gastroprotective underlying mechanisms were evaluated by the histopathological analysis and determination of gastric secretion (volume, free and total acidity), gastric barrier mucus, activation of PGs, NO, K +ATP channels, α2-adrenoceptor, antioxidant activity (GSH, MPO and MDA), NO and mucosal cytokines (TNF-α, IL-1β, and IL-10) levels. RESULTS The chemical composition of HEFc was analyzed and apigenin, scutellarin, and carajurone were identified. HEFc (1, 5 and 20 mg/kg) showed effect against acute ulcers induced by HCl/EtOH with a reduction in the ulcerated area of 64.41% (p < 0.001), 54.23% (p < 0.01), 38.71% (p < 0.01), respectively. In the indomethacin experiment, there was no change in the doses tested, whereas in the water immersion restraint stress ulcer there was a reduction of lesions at doses of 1, 5, and 20 mg/kg by 80.34% (p < 0.001), 68.46% (p < 0.01) and 52.04% (p < 0.01). HEFc increased the mucus production at doses of 1 and 20 mg/kg in 28.14% (p < 0.05) and 38.36% (p < 0.01), respectively. In the pyloric ligation-induced model of gastric ulceration, the HEFc decreased the total acidity in all doses by 54.23%, 65.08%, and 44.40% (p < 0.05) and gastric secretory volume in 38.47% at dose of 1 mg/kg (p < 0,05) and increased the free acidity at the dose of 5 mg/kg by 11.86% (p < 0.05). The administration of EHFc (1 mg/kg) showed a gastroprotective effect possibly by stimulating the release of prostaglandins and activating K+ATP channels and α2-adrenoreceptors. Also, the gastroprotective effect of HEFc involved an increase in CAT and GSH activities, and a reduction in MPO activity and MDA levels. In the chronic gastric ulcer model, the HEFc (1, 5 and 20 mg/kg) decreased the ulcerated area significantly (p < 0.001) at all doses by 71.37%, 91.00%, and 93.46%, respectively. In the histological analysis, HEFc promoted the healing of gastric lesions by stimulating the formation of granulation tissue and consequently epithelialization. On the other hand, regarding the effect of HEFc on gastric emptying and intestinal transit, it was observed that the extract did not alter gastric emptying, but there was an increase in intestinal transit at the dose of 1 mg/kg (p < 0.01). CONCLUSION These outcomes confirmed the advantages of Fridericia chica leaves for the treatment of stomach ulcers, which are well-known. HEFc was discovered to have antiulcer characteristics through multitarget pathways, which might be related to an increase in stomach defense mechanisms and a decrease in defensive factor. HEFc can be regarded as a potential new antiulcer herbal remedy because of its antiulcer properties, which may be attributed to the mixture of flavonoids, apigenin, scutellarin and carajurone.
Collapse
Affiliation(s)
- Fabiana de Freitas Figueiredo
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil.
| | - Amilcar Sabino Damazo
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil; Área de Histologia e Biologia Celular, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil.
| | - Karuppusamy Arunachalam
- Centro de Estudos em Células Tronco, Terapia Celular e Genética Toxicológica (CeTroGen), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, 79070-900, MS, Brazil; Programa de Pós-graduação em Saúde e Desenvolvimento da Região Centro-Oeste, Faculdade de Medicina Dr. Hélio Mandetta (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, 79070-900, MS, Brazil.
| | - Marcelo José Dias Silva
- Universidade Federal de Alfenas (UNIFAL-MG), Laboratório de Plantas Medicinais e Fitoterápicos, Rua Gabriel Monteiro da Silva, 700. Centro Alfenas, MG, Brazil.
| | - Eduarda Pavan
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil.
| | - Joaquim Corsino da Silva Lima
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil.
| | - Domingos Tabajara de Oliveira Martins
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil; Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil.
| |
Collapse
|
7
|
Cao H. Editorial for the Special Issue on Plant Polyphenols in the Immune and Inflammatory Responses. Biomolecules 2023; 13:biom13050814. [PMID: 37238684 DOI: 10.3390/biom13050814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Inflammation and associated immune diseases have placed a heavy burden on health care systems [...].
Collapse
Affiliation(s)
- Heping Cao
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA 70124, USA
| |
Collapse
|
8
|
Phytochemicals and Regulation of NF-kB in Inflammatory Bowel Diseases: An Overview of In Vitro and In Vivo Effects. Metabolites 2023; 13:metabo13010096. [PMID: 36677021 PMCID: PMC9862976 DOI: 10.3390/metabo13010096] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic relapsing idiopathic inflammatory conditions affecting the gastrointestinal tract. They are mainly represented by two forms, ulcerative colitis (UC) and Crohn's disease (CD). IBD can be associated with the activation of nuclear factors, such as nuclear factor-kB (NF-kB), leading to increased transcription of pro-inflammatory mediators that result in diarrhea, abdominal pain, bleeding, and many extra-intestinal manifestations. Phytochemicals can interfere with many inflammation targets, including NF-kB pathways. Thus, this review aimed to investigate the effects of different phytochemicals in the NF-kB pathways in vitro and in vivo models of IBD. Fifty-six phytochemicals were included in this study, such as curcumin, resveratrol, kaempferol, sesamol, pinocembrin, astragalin, oxyberberine, berberine hydrochloride, botulin, taxifolin, naringin, thymol, isobavachalcone, lancemaside A, aesculin, tetrandrine, Ginsenoside Rk3, mangiferin, diosgenin, theanine, tryptanthrin, lycopene, gyngerol, alantolactone, mangostin, ophiopogonin D, fisetin, sinomenine, piperine, oxymatrine, euphol, artesunate, galangin, and nobiletin. The main observed effects related to NF-kB pathways were reductions in tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, IL-6, interferon-gamma (IFN-γ), and cyclooxygenase-2 (COX-2), and augmented occludin, claudin-1, zonula occludens-1, and IL-10 expression levels. Moreover, phytochemicals can improve weight loss, stool consistency, and rectal bleeding in IBD. Therefore, phytochemicals can constitute a powerful treatment option for IBD in humans.
Collapse
|