1
|
Guo L, Wang N, Chen J, Zhang R, Li D, Yang L. Cellular senescence and glaucoma. Exp Gerontol 2025; 202:112718. [PMID: 39983803 DOI: 10.1016/j.exger.2025.112718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/06/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Cellular senescence, a characteristic feature of the aging process, is induced by diverse stressors. In recent years, glaucoma has emerged as a blinding ocular disease intricately linked to cellular senescence. The principal pathways implicated are oxidative stress, mitochondrial dysfunction, DNA damage, autophagy impairment, and the secretion of various senescence- associated secretory phenotype factors. Research on glaucoma-associated cellular senescence predominantly centers around the increased resistance of the aqueous humor outflow pathway, which is attributed to the senescence of the trabecular meshwork and Schlemm's canal. Additionally, it focuses on the mechanisms underlying retinal ganglion cell senescence in glaucoma and the corresponding intervention measures. Given that cell senescence represents an irreversible phase preceding cell death, an in-depth investigation into its mechanisms in the pathogenesis and progression of glaucoma, particularly by specifically blocking the signal transduction of cell senescence, holds the potential to decrease the outflow resistance of aqueous humor. This, in turn, could provide a novel avenue for safeguarding the optic nerve in glaucoma.
Collapse
Affiliation(s)
- Liang Guo
- The Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Na Wang
- The First Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jing Chen
- The Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Rui Zhang
- The Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Dan Li
- The Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lu Yang
- The Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
2
|
Roodnat AW, Doyle C, Callaghan B, Lester K, Henry M, Sheridan C, McKenna DJ, Willoughby CE, Atkinson SD. Investigating the miRNA-mRNA interactome of human trabecular meshwork cells treated with TGF-β1 provides insights into the pathogenesis of pseudoexfoliation glaucoma. PLoS One 2025; 20:e0318125. [PMID: 39883689 PMCID: PMC11781692 DOI: 10.1371/journal.pone.0318125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025] Open
Abstract
Pseudoexfoliation glaucoma is a severe form of secondary open angle glaucoma and is associated with activation of the TGF-β pathway by TGF-β1. MicroRNAs (miRNAs) are small non-coding RNA species that are involved in regulation of mRNA expression and translation. To investigate what glaucomatous changes occur in the trabecular meshwork and how these changes may be regulated by miRNAs, we performed a bioinformatics analysis resulting in a miRNA-mRNA interactome. Primary human trabecular meshwork cells originating from normal donors were treated with TGF-β1 at 5 ng/mL for 24h; total RNA was extracted followed by RNA-Seq and miRNA-Seq. For both mRNA and miRNA species, differential expression was determined using a bioinformatics pipeline consisting of FastQC, STAR, FeatureCounts, edgeR (for miRNA) and DESeq2 (for mRNA). Putative mRNA-miRNA interactions between differentially expressed mRNA and miRNA species were determined using interaction databases miRWalk, miRTarBase, TarBase and TargetScan. To classify mRNA species by function and pathway, gene enrichment was performed using Enrichr. The resulting miRNA-mRNA interactome consisted of 1202 interactions. Some highly connected microRNAs were hsa-let-7e-5p, hsa-miR-20a-5p, hsa-miR-122-5p, and hsa-miR-29c-3p. Most differentially expressed genes were indicated to be regulated by miRNAs. The sub-interactomes of genes involved in specific pseudoexfoliation glaucoma related enrichment terms such as oxidative stress, unfolded protein response, signal molecules and ECM remodelling were determined. This is the first study to present a genome-wide microRNA-mRNA regulatory network for human trabecular meshwork cells treated with TGF-β1 and may serve to generate unbiased hypotheses about regulatory functions and mRNA targets of miRNAs in pseudoexfoliation glaucoma and may help to develop miRNA-based therapeutics.
Collapse
Affiliation(s)
- Anton W. Roodnat
- Biomedical Sciences Research Institute, Centre for Genomic Medicine, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Chelsey Doyle
- Biomedical Sciences Research Institute, Centre for Genomic Medicine, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Breedge Callaghan
- Biomedical Sciences Research Institute, Centre for Genomic Medicine, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Karen Lester
- Biomedical Sciences Research Institute, Centre for Genomic Medicine, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Megan Henry
- Biomedical Sciences Research Institute, Centre for Genomic Medicine, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Carl Sheridan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Declan J. McKenna
- Biomedical Sciences Research Institute, Centre for Genomic Medicine, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Colin E. Willoughby
- Biomedical Sciences Research Institute, Centre for Genomic Medicine, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Sarah D. Atkinson
- Biomedical Sciences Research Institute, Centre for Genomic Medicine, Ulster University, Coleraine, Northern Ireland, United Kingdom
| |
Collapse
|
3
|
Elsayed OA, Cai J, Liu Y. Exfoliation syndrome genetics in the era of post-GWAS. Vision Res 2025; 226:108518. [PMID: 39549468 PMCID: PMC11624108 DOI: 10.1016/j.visres.2024.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
Exfoliation syndrome (XFS), or pseudoexfoliation syndrome, is considered a systemic disorder that leads to glaucoma with progressive visual field loss. A better insight into the underlying pathogenic mechanism will help diagnose the disease and prevent and slow progression. Here, we provide an overview of disease pathogenesis in the light of GWAS and multi-omics research. We discuss possible environmental interactions related to XFS. We investigate the potential interactions in differentially expressed genes from RNA-Seq by using Ingenuity Pathway Analysis. MAPK pathway was identified as the top network of these genes. Further investigation is needed to verify our results in vivo. It is necessary to establish an animal model mimicking exfoliation syndrome phenotypes.
Collapse
Affiliation(s)
- Ola A Elsayed
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Jingwen Cai
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA; Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, USA; James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
4
|
Buffault J, Reboussin É, Blond F, Guillonneau X, Bastelica P, Kessal K, Akkurt Arslan M, Melik-Parsadaniantz S, Réaux-le Goazigo A, Labbé A, Brignole-Baudouin F, Baudouin C. RNA-seq transcriptomic profiling of TGF-β2-exposed human trabecular meshwork explants: Advancing insights beyond conventional cell culture models. Exp Cell Res 2024; 442:114220. [PMID: 39214330 DOI: 10.1016/j.yexcr.2024.114220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/26/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Primary open-angle glaucoma (POAG), a leading cause of irreversible vision loss, is closely linked to increased intraocular pressure (IOP), with the trabecular meshwork (TM) playing a critical role in its regulation. The TM, located at the iridocorneal angle, acts as a sieve, filtering the aqueous humor from the eye into the collecting ducts, thus maintaining proper IOP levels. The transforming growth factor-beta 2 (TGF-β2) signaling pathway has been implicated in the pathophysiology of primary open-angle glaucoma POAG particularly, in the dysfunction of the TM. This study utilizes human TM explants to closely mimic in vivo conditions, thereby minimizing transcriptional changes that could arise from cell culture enabling an exploration of the transcriptomic impacts of TGF-β2. Through bulk RNA sequencing and immunohistological analysis, we identified distinct gene expression patterns and morphological changes induced by TGF-β2 exposure (5 ng/ml for 48 h). Bulk RNA sequencing identified significant upregulation in genes linked to extracellular matrix (ECM) regulation and fibrotic signaling. Immunohistological analysis further elucidated the morphological alterations, including cytoskeletal rearrangements and ECM deposition, providing a visual confirmation of the transcriptomic data. Notably, the enrichment analysis unveils TGF-β2's influence on both bone morphogenic protein (BMP) and Wnt signaling pathways, suggesting a complex interplay of molecular mechanisms contributing to TM dysfunction in glaucoma. This characterization of the transcriptomic modifications on an explant model of TM obtained under the effect of this profibrotic cytokine involved in glaucoma is crucial in order to develop and test new molecules that can block their signaling pathways.
Collapse
Affiliation(s)
- J Buffault
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, IHU Foresight, Paris, France; Sorbonne Université, INSERM, CNRS, IHU Foresight, Institut de La Vision, Paris, France; Department of Ophthalmology, Ambroise Paré Hospital, APHP, Université de Paris Saclay, Boulogne-Billancourt, France.
| | - É Reboussin
- Sorbonne Université, INSERM, CNRS, IHU Foresight, Institut de La Vision, Paris, France
| | - F Blond
- Sorbonne Université, INSERM, CNRS, IHU Foresight, Institut de La Vision, Paris, France
| | - X Guillonneau
- Sorbonne Université, INSERM, CNRS, IHU Foresight, Institut de La Vision, Paris, France
| | - P Bastelica
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, IHU Foresight, Paris, France; Sorbonne Université, INSERM, CNRS, IHU Foresight, Institut de La Vision, Paris, France
| | - K Kessal
- Sorbonne Université, INSERM, CNRS, IHU Foresight, Institut de La Vision, Paris, France
| | - M Akkurt Arslan
- Sorbonne Université, INSERM, CNRS, IHU Foresight, Institut de La Vision, Paris, France
| | - S Melik-Parsadaniantz
- Sorbonne Université, INSERM, CNRS, IHU Foresight, Institut de La Vision, Paris, France
| | - A Réaux-le Goazigo
- Sorbonne Université, INSERM, CNRS, IHU Foresight, Institut de La Vision, Paris, France
| | - A Labbé
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, IHU Foresight, Paris, France; Department of Ophthalmology, Ambroise Paré Hospital, APHP, Université de Paris Saclay, Boulogne-Billancourt, France
| | - F Brignole-Baudouin
- Sorbonne Université, INSERM, CNRS, IHU Foresight, Institut de La Vision, Paris, France; Department of Biology, CHNO des Quinze-Vingts, IHU Foresight, Paris, France
| | - C Baudouin
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, IHU Foresight, Paris, France; Sorbonne Université, INSERM, CNRS, IHU Foresight, Institut de La Vision, Paris, France.
| |
Collapse
|
5
|
Park Y, Yu BS, Heo YM, Kyung S, Lee KE, Kim S, Kang S, Han K, Kim DH. Characteristics of Malassezia furfur at various pH and effects of Malassezia lipids on skin cells. Appl Microbiol Biotechnol 2024; 108:455. [PMID: 39231813 PMCID: PMC11374913 DOI: 10.1007/s00253-024-13292-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
Malassezia species are commensal and opportunistic fungi found in human skin. All Malassezia species lack fatty acid synthesis genes and survive by utilizing several lipases to degrade and absorb fatty acids from external lipid sources, but little research has been done on their optimal active pH and temperature. Our skin protects itself from external stimuli and maintains homeostasis, involving bacteria and fungi such as Malassezia species that inhabit our skin. Hence, dysbiosis in the skin microbiome can lead to various skin diseases. The skin's pH is slightly acidic compared to neutral, and changes in pH can affect the metabolism of Malassezia species. We used keratinocyte cell lines to determine the effect of lipids bio-converted by Malassezia furfur, Malassezia japonica, and Malassezia yamatoensis under pH conditions similar to those of healthy skin. Lipids bio-converted from Malassezia species were associated with the regulation of transcripts related to inflammation, moisturizing, and promoting elasticity. Therefore, to determine the effect of pH on lipid metabolism in M. furfur, which is associated with seborrheic dermatitis, changes in biomass, lipid content, and fatty acid composition were determined. The results showed that pH 7 resulted in low growth and reduced lipid content, which had a negative impact on skin health. Given that bio-converted Malassezia-derived lipids show positive effects at the slightly acidic pH typical of healthy skin, it is important to study their effects on skin cells under various pH conditions. KEY POINTS: • pH 6, Malassezia spp. bio-converted lipid have a positive effect on skin cells • Malassezia spp. have different lipid, fatty acid, and growth depending on pH • Malassezia spp. can play a beneficial role by secreting lipids to the outside.
Collapse
Affiliation(s)
- Yujun Park
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Byung Sun Yu
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, 31116, Republic of Korea
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea
- Smart Animal Bio Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Young Mok Heo
- COSMAX BTI R&I Center, 255, Pangyo-Ro, Bundang-Gu, Seongnam, 13486, Republic of Korea
| | - Seoyeon Kyung
- COSMAX BTI R&I Center, 255, Pangyo-Ro, Bundang-Gu, Seongnam, 13486, Republic of Korea
| | - Kyung-Eun Lee
- COSMAX BTI R&I Center, 255, Pangyo-Ro, Bundang-Gu, Seongnam, 13486, Republic of Korea
| | - Sol Kim
- COSMAX BTI R&I Center, 255, Pangyo-Ro, Bundang-Gu, Seongnam, 13486, Republic of Korea
| | - Seunghyun Kang
- COSMAX BTI R&I Center, 255, Pangyo-Ro, Bundang-Gu, Seongnam, 13486, Republic of Korea
| | - Kyudong Han
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, 31116, Republic of Korea.
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea.
- Smart Animal Bio Institute, Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Human, Microbiome Research HuNbiome Co. Ltd, R&D Center, Seoul, Republic of Korea.
| | - Dong Hee Kim
- Department of Anesthesiology and Pain Management, Dankook University Hospital, Cheonan, 31116, Korea.
| |
Collapse
|
6
|
Roodnat AW, Callaghan B, Doyle C, Vallabh NA, Atkinson SD, Willoughby CE. Genome-wide RNA sequencing of ocular fibroblasts from glaucomatous and normal eyes: Implications for glaucoma management. PLoS One 2024; 19:e0307227. [PMID: 38990974 PMCID: PMC11239048 DOI: 10.1371/journal.pone.0307227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Primary open angle glaucoma is a leading cause of visual impairment and blindness which is commonly treated with drugs or laser but may require surgery. Tenon's ocular fibroblasts are involved in wound-healing after glaucoma filtration surgery and may compromise a favourable outcome of glaucoma surgery by contributing to fibrosis. To investigate changes in gene expression and key pathways contributing to the glaucomatous state we performed genome-wide RNA sequencing. Human Tenon's ocular fibroblasts were cultured from normal and glaucomatous human donors undergoing eye surgery (n = 12). mRNA was extracted and RNA-Seq performed on the Illumina platform. Differentially expressed genes were identified using a bioinformatics pipeline consisting of FastQC, STAR, FeatureCounts and edgeR. Changes in biological functions and pathways were determined using Enrichr and clustered using Cytoscape. A total of 5817 genes were differentially expressed between Tenon's ocular fibroblasts from normal versus glaucomatous eyes. Enrichment analysis showed 787 significantly different biological functions and pathways which were clustered into 176 clusters. Tenon's ocular fibroblasts from glaucomatous eyes showed signs of fibrosis with fibroblast to myofibroblast transdifferentiation and associated changes in mitochondrial fission, remodeling of the extracellular matrix, proliferation, unfolded protein response, inflammation and apoptosis which may relate to the pathogenesis of glaucoma or the detrimental effects of topical glaucoma therapies. Altered gene expression in glaucomatous Tenon's ocular fibroblasts may contribute to an unfavourable outcome of glaucoma filtration surgery. This work presents a genome-wide transcriptome of glaucomatous versus normal Tenon's ocular fibroblasts which may identify genes or pathways of therapeutic value to improve surgical outcomes.
Collapse
Affiliation(s)
- Anton W. Roodnat
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Breedge Callaghan
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Chelsey Doyle
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Neeru A. Vallabh
- Department of Eye and Vision Science, Insitute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- St. Paul’s Eye Unit, Liverpool University Hospital NHS Foundation Trust, Liverpool, United Kingdom
| | - Sarah D. Atkinson
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Colin E. Willoughby
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom
| |
Collapse
|
7
|
Rao A. Risk factors for exfoliation glaucoma - Current evidence and perspectives. Indian J Ophthalmol 2024; 72:S562-S567. [PMID: 38767565 PMCID: PMC11338424 DOI: 10.4103/ijo.ijo_2685_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/30/2024] [Accepted: 02/15/2024] [Indexed: 05/22/2024] Open
Abstract
Exfoliation syndrome (XFS) and exfoliation glaucoma (XFG) represent a complex matrix of ocular age-related neurodegenerative changes. Numerous decades of research on this disease entity have highlighted the unique clinical features of ocular protein-complex aggregates, which lead to tissue dysfunction of the ocular outflow channels, leading to irreversible optic nerve damage and glaucoma. While genetic studies have reported several genes associated with XFS and XFG, numerous studies have shown their association with common systemic diseases such as ischemic heart disease, cerebrovascular accidents, and hypertension. Environmental factors are also reported to play a role in the disease pathogenesis by epigenetic control of gene expression and partly explain the difference in the prevalence rates of the disease process. Despite the identification of possible triggers for the disease onset or for the development of glaucoma, the exact mechanisms or the role of several reported risk factors in disease pathogenesis remain a mystery. This review comprehensively evaluated the several risk factors in XFS and XFG while discussing the interactive interplay between the risk factors that determine the disease onset or phenotype in XFS and XFG.
Collapse
Affiliation(s)
- Aparna Rao
- Glaucoma Services, LV Prasad Eye Institute, KAR Campus, Hyderabad, Telangana, India
| |
Collapse
|
8
|
Du Y. The Hippo signalling pathway and its impact on eye diseases. J Cell Mol Med 2024; 28:e18300. [PMID: 38613348 PMCID: PMC11015399 DOI: 10.1111/jcmm.18300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/26/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The Hippo signalling pathway, an evolutionarily conserved kinase cascade, has been shown to be crucial for cell fate determination, homeostasis and tissue regeneration. Recent experimental and clinical studies have demonstrated that the Hippo signalling pathway is involved in the pathophysiology of ocular diseases. This article provides the first systematic review of studies on the regulatory and functional roles of mammalian Hippo signalling systems in eye diseases. More comprehensive studies on this pathway are required for a better understanding of the pathophysiology of eye diseases and the development of effective therapies.
Collapse
Affiliation(s)
- Yuxiang Du
- Precision Medicine Laboratory for Chronic Non‐communicable Diseases of Shandong Province, Institute of Precision MedicineJining Medical UniversityJiningShandongPeople's Republic of China
| |
Collapse
|
9
|
Tonti E, Dell’Omo R, Filippelli M, Spadea L, Salati C, Gagliano C, Musa M, Zeppieri M. Exploring Epigenetic Modifications as Potential Biomarkers and Therapeutic Targets in Glaucoma. Int J Mol Sci 2024; 25:2822. [PMID: 38474069 PMCID: PMC10932063 DOI: 10.3390/ijms25052822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Glaucoma, a complex and multifactorial neurodegenerative disorder, is a leading cause of irreversible blindness worldwide. Despite significant advancements in our understanding of its pathogenesis and management, early diagnosis and effective treatment of glaucoma remain major clinical challenges. Epigenetic modifications, encompassing deoxyribonucleic acid (DNA) methylation, histone modifications, and non-coding RNAs, have emerged as critical regulators of gene expression and cellular processes. The aim of this comprehensive review focuses on the emerging field of epigenetics and its role in understanding the complex genetic and molecular mechanisms underlying glaucoma. The review will provide an overview of the pathophysiology of glaucoma, emphasizing the intricacies of intraocular pressure regulation, retinal ganglion cell dysfunction, and optic nerve damage. It explores how epigenetic modifications, such as DNA methylation and histone modifications, can influence gene expression, and how these mechanisms are implicated in glaucomatous neurodegeneration and contribute to glaucoma pathogenesis. The manuscript discusses evidence from both animal models and human studies, providing insights into the epigenetic alterations associated with glaucoma onset and progression. Additionally, it discusses the potential of using epigenetic modifications as diagnostic biomarkers and therapeutic targets for more personalized and targeted glaucoma treatment.
Collapse
Affiliation(s)
- Emanuele Tonti
- Eye Clinic, Policlinico Umberto I University Hospital, 00142 Rome, Italy; (E.T.)
| | - Roberto Dell’Omo
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Via Francesco De Sanctis 1, 86100 Campobasso, Italy
| | - Mariaelena Filippelli
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Via Francesco De Sanctis 1, 86100 Campobasso, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I University Hospital, 00142 Rome, Italy; (E.T.)
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Caterina Gagliano
- Faculty of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Eye Clinic, Catania University, San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Nigeria
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
10
|
Okruszko MA, Szabłowski M, Zarzecki M, Michnowska-Kobylińska M, Lisowski Ł, Łapińska M, Stachurska Z, Szpakowicz A, Kamiński KA, Konopińska J. Inflammation and Neurodegeneration in Glaucoma: Isolated Eye Disease or a Part of a Systemic Disorder? - Serum Proteomic Analysis. J Inflamm Res 2024; 17:1021-1037. [PMID: 38370463 PMCID: PMC10874189 DOI: 10.2147/jir.s434989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction Glaucoma is the most common optic neuropathy and the leading cause of irreversible blindness worldwide, which affects 3.54% of the population aged 40-80 years. Despite numerous published studies, some aspects of glaucoma pathogenesis, serum biomarkers, and their potential link with other diseases remain unclear. Recent articles have proposed that autoimmune, oxidative stress and inflammation may be involved in the pathogenesis of glaucoma. Methods We investigated the serum expression of 92 inflammatory and neurotrophic factors in glaucoma patients. The study group consisted of 26 glaucoma patients and 192 healthy subjects based on digital fundography. Results Patients with glaucoma had significantly lower serum expression of IL-2Rβ, TWEAK, CX3CL1, CD6, CD5, LAP TGF-beta1, LIF-R, TRAIL, NT-3, and CCL23 and significantly higher expression of IL-22Rα1. Conclusion Our results indicate that patients with glaucoma tend to have lower levels of neuroprotective proteins and higher levels of neuroinflammatory proteins, similar to those observed in psychiatric, neurodegenerative and autoimmune diseases, indicating a potential link between these conditions and glaucoma pathogenesis.
Collapse
Affiliation(s)
| | - Maciej Szabłowski
- Department of Ophthalmology, Medical University of Bialystok, Białystok, 15-089, Poland
| | - Mateusz Zarzecki
- Department of Ophthalmology, Medical University of Bialystok, Białystok, 15-089, Poland
| | | | - Łukasz Lisowski
- Department of Ophthalmology, Medical University of Bialystok, Białystok, 15-089, Poland
| | - Magda Łapińska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, Białystok, Poland
| | - Zofia Stachurska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, Białystok, Poland
| | - Anna Szpakowicz
- Department of Cardiology, Medical University of Bialystok, Białystok, Poland
| | - Karol Adam Kamiński
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, Białystok, Poland
| | - Joanna Konopińska
- Department of Ophthalmology, Medical University of Bialystok, Białystok, 15-089, Poland
| |
Collapse
|
11
|
Kandeeban S, Ishwarya S, Nareshkumar RN, Gunalan V, Porkodi P, Shyam Sundar J, Asokan R, Sharada R, Sripriya K, George R, Sripriya S. A Study on the Candidate Gene Association and Interaction with Measures of UV Exposure in Pseudoexfoliation Patients from India. Curr Eye Res 2023; 48:1144-1152. [PMID: 37556844 DOI: 10.1080/02713683.2023.2246689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/18/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
PURPOSE Environmental and genetic factors are associated with development of Pseudoexfoliation syndrome (XFS). Here we intended to elucidate the association of candidate genes in relevance to UV exposure in these patients. METHODS This is a case-control study of 309 subjects (N = 219 controls and 90 XFS cases) from India. PCR based direct sequencing was performed for candidate genes (LOXL1, POMP and TMEM136) followed by genotype and haplotype analysis. The promoter methylation status was assessed by Methylation specific PCR based direct sequencing of genomic DNA for all samples. The methylation status was compared with that of primary fibroblasts cultures established from patient's Tenon's tissue samples in subset of these patients. RESULTS SNPs rs3825942, rs41435250, rs8818 (LOXL1) and rs3737528 (POMP) showed significant association with XFS. LOXL1 gene haplotype GAGC (rs1048661- rs3825942- rs41435250-rs8818) was associated with lower risk for XFS with a p value 4.1961 × 10-6 (OR =0; 95%CI, 0.000-0.003). POMP gene haplotypes for intronic SNPs (rs1340815- rs3737528- rs913797) TCC and TTC were associated with increased risk for the disease (OR > 1.0). Significant correlation for SNPs rs3825942 of LOXL1 (ρ= -0.132) and rs3737528 of POMP (ρ = 0.12) was observed with measure of lifetime UV exposure (CUVAF value). Reduced LOXL1 gene expression was observed in cultured tenon fibroblasts from the patients that correlated with differential methylation of the Sp-1 binding sites at -253, -243bp upstream to the transcription start site of LOXL1 promoter region. CONCLUSION Our results suggest a possible interaction for LOXL1 gene haplotype (GAGC) with the measure of ocular UV exposure in pseudoexfoliation syndrome.
Collapse
Affiliation(s)
- Suganya Kandeeban
- SNONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai, India
- School of Chemical and Biotechnology, SASTRA University, Tanjavur, India
| | - Sureshkumar Ishwarya
- Glaucoma Services, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - R N Nareshkumar
- Department of Biochemistry and Cell Biology, Vision Research Foundation, R S Mehta Jain, Chennai, India
| | - Vaishaali Gunalan
- Glaucoma Services, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - P Porkodi
- SNONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai, India
| | - J Shyam Sundar
- Department of Biochemistry and Cell Biology, Vision Research Foundation, R S Mehta Jain, Chennai, India
| | - Rashima Asokan
- Glaucoma Services, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - R Sharada
- Glaucoma Services, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Krishnamoorthy Sripriya
- Smt. Jadhavbai Nathamal Singhvee Glaucoma Services, Medical Research Foundation, Chennai, India
| | - Ronnie George
- Smt. Jadhavbai Nathamal Singhvee Glaucoma Services, Medical Research Foundation, Chennai, India
| | - Sarangapani Sripriya
- SNONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai, India
| |
Collapse
|
12
|
Wang W, Wang H. Understanding the complex genetics and molecular mechanisms underlying glaucoma. Mol Aspects Med 2023; 94:101220. [PMID: 37856931 DOI: 10.1016/j.mam.2023.101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide. Currently the only effective treatment for glaucoma is to reduce the intraocular pressure, which can halt the progression of the disease. Highlighting the importance of identifying individuals at risk of developing glaucoma and those with early-stage glaucoma will help patients receive treatment before sight loss. However, some cases of glaucoma do not have raised intraocular pressure. In fact, glaucoma is caused by a variety of different mechanisms and has a wide range of different subtypes. Understanding other risk factors, the underlying mechanisms, and the pathology of glaucoma might lead to novel treatments and treatment of underlying diseases. In this review we present the latest research into glaucoma including the genetics and molecular basis of the disease.
Collapse
Affiliation(s)
- Weiwei Wang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital, Northwest University, Xi'an, 710004, Shaanxi Province, China.
| | - Huaizhou Wang
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| |
Collapse
|
13
|
Buffault J, Brignole-Baudouin F, Labbé A, Baudouin C. An Overview of Current Glaucomatous Trabecular Meshwork Models. Curr Eye Res 2023; 48:1089-1099. [PMID: 37661784 DOI: 10.1080/02713683.2023.2253378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/26/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE To provide an overview of the existing alternative models for studying trabecular meshwork (TM). METHODS Literature review. RESULTS The TM is a complex tissue that regulates aqueous humor outflow from the eye. Dysfunction of the TM is a major contributor to the pathogenesis of open-angle glaucoma, a leading cause of irreversible blindness worldwide. The TM is a porous structure composed of trabecular meshwork cells (TMC) within a multi-layered extracellular matrix (ECM). Although dysregulation of the outflow throughout the TM represents the first step in the disease process, the underlying mechanisms of TM degeneration associate cell loss and accumulation of ECM, but remain incompletely understood, and drugs targeting the TM are limited. Therefore, experimental models of glaucomatous trabeculopathy are necessary for preclinical screening, to advance research on this disease's pathophysiology, and to develop new therapeutic strategies targeting the TM. Traditional animal models have been used extensively, albeit with inherent limitations, including ethical concerns and limited translatability to humans. Consequently, there has been an increasing focus on developing alternative in vitro models to study the TM. Recent advancements in three-dimensional cell culture and tissue engineering are still in their early stages and do not yet fully reflect the complexity of the outflow pathway. However, they have shown promise in reducing reliance on animal experimentation in certain aspects of glaucoma research. CONCLUSION This review provides an overview of the existing alternative models for studying TM and their potential for advancing research on the pathophysiology of open-angle glaucoma and developing new therapeutic strategies.
Collapse
Affiliation(s)
- Juliette Buffault
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, IHU Foresight, Paris, France
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, IHU Foresight, Paris, France
- Department of Ophthalmology, Ambroise Paré Hospital, APHP, Université de Versailles Saint-Quentin-en-Yvelines, Boulogne-Billancourt, France
| | - Françoise Brignole-Baudouin
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, IHU Foresight, Paris, France
- Department of Biology, Quinze-Vingts National Ophthalmology Hospital, IHU Foresight, Paris, France
| | - Antoine Labbé
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, IHU Foresight, Paris, France
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, IHU Foresight, Paris, France
- Department of Ophthalmology, Ambroise Paré Hospital, APHP, Université de Versailles Saint-Quentin-en-Yvelines, Boulogne-Billancourt, France
| | - Christophe Baudouin
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, IHU Foresight, Paris, France
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, IHU Foresight, Paris, France
| |
Collapse
|
14
|
Feng L, Wang C, Zhang C, Zhang W, Song W. Role of epigenetic regulation in glaucoma. Biomed Pharmacother 2023; 168:115633. [PMID: 37806089 DOI: 10.1016/j.biopha.2023.115633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Glaucoma is the world's leading irreversible blinding eye disease. Lowering intraocular pressure is currently the only effective clinical treatment. However, there is a lack of long-acting IOP-lowering drugs, and some patients still experience retinal ganglion cell loss even with good intraocular pressure control. Currently, there is no effective method for neuroprotection and regeneration in clinical practice for glaucoma. In recent years, epigenetics has been widely researched and reported for its role in glaucoma's neuroprotection and regeneration. This article reviews the changes in histone modifications, DNA methylation, non-coding RNA, and m6A methylation in glaucoma, aiming to provide new perspectives for glaucoma management, protection of retinal ganglion cells, and axon regeneration by understanding epigenetic alterations.
Collapse
Affiliation(s)
- Lemeng Feng
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Chao Wang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Cheng Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Wulong Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China
| | - Weitao Song
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan 410008, PR China; Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, PR China.
| |
Collapse
|