1
|
López-Pérez K, Avellaneda-Tamayo JF, Chen L, López-López E, Juárez-Mercado KE, Medina-Franco JL, Miranda-Quintana RA. Molecular similarity: Theory, applications, and perspectives. ARTIFICIAL INTELLIGENCE CHEMISTRY 2024; 2:100077. [PMID: 40124654 PMCID: PMC11928018 DOI: 10.1016/j.aichem.2024.100077] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Molecular similarity pervades much of our understanding and rationalization of chemistry. This has become particularly evident in the current data-intensive era of chemical research, with similarity measures serving as the backbone of many Machine Learning (ML) supervised and unsupervised procedures. Here, we present a discussion on the role of molecular similarity in drug design, chemical space exploration, chemical "art" generation, molecular representations, and many more. We also discuss more recent topics in molecular similarity, like the ability to efficiently compare large molecular libraries.
Collapse
Affiliation(s)
- Kenneth López-Pérez
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL 32611, USA
| | - Juan F. Avellaneda-Tamayo
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
| | - Lexin Chen
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL 32611, USA
| | - Edgar López-López
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
- Department of Chemistry and Graduate Program in Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute, Section 14-740, Mexico City 07000, Mexico
| | - K. Eurídice Juárez-Mercado
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
| | - José L. Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
| | | |
Collapse
|
2
|
Martinez-Mayorga K, Rosas-Jiménez JG, Gonzalez-Ponce K, López-López E, Neme A, Medina-Franco JL. The pursuit of accurate predictive models of the bioactivity of small molecules. Chem Sci 2024; 15:1938-1952. [PMID: 38332817 PMCID: PMC10848664 DOI: 10.1039/d3sc05534e] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024] Open
Abstract
Property prediction is a key interest in chemistry. For several decades there has been a continued and incremental development of mathematical models to predict properties. As more data is generated and accumulated, there seems to be more areas of opportunity to develop models with increased accuracy. The same is true if one considers the large developments in machine and deep learning models. However, along with the same areas of opportunity and development, issues and challenges remain and, with more data, new challenges emerge such as the quality and quantity and reliability of the data, and model reproducibility. Herein, we discuss the status of the accuracy of predictive models and present the authors' perspective of the direction of the field, emphasizing on good practices. We focus on predictive models of bioactive properties of small molecules relevant for drug discovery, agrochemical, food chemistry, natural product research, and related fields.
Collapse
Affiliation(s)
- Karina Martinez-Mayorga
- Institute of Chemistry, Merida Unit, National Autonomous University of Mexico Merida-Tetiz Highway, Km. 4.5 Ucu Yucatan Mexico
- Institute for Applied Mathematics and Systems, Merida Research Unit, National Autonomous University of Mexico Sierra Papacal Merida Yucatan Mexico
| | - José G Rosas-Jiménez
- Department of Theoretical Biophysics, IMPRS on Cellular Biophysics Max-von-Laue Strasse 3 Frankfurt am Main 60438 Germany
| | - Karla Gonzalez-Ponce
- Institute of Chemistry, Merida Unit, National Autonomous University of Mexico Merida-Tetiz Highway, Km. 4.5 Ucu Yucatan Mexico
| | - Edgar López-López
- Department of Chemistry and Graduate Program in Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute Mexico City 07000 Mexico
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry National Autonomous University of Mexico Mexico City 04510 Mexico
| | - Antonio Neme
- Institute for Applied Mathematics and Systems, Merida Research Unit, National Autonomous University of Mexico Sierra Papacal Merida Yucatan Mexico
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry National Autonomous University of Mexico Mexico City 04510 Mexico
| |
Collapse
|
3
|
Gaytán-Hernández D, Chávez-Hernández AL, López-López E, Miranda-Salas J, Saldívar-González FI, Medina-Franco JL. Art driven by visual representations of chemical space. J Cheminform 2023; 15:100. [PMID: 37865794 PMCID: PMC10590523 DOI: 10.1186/s13321-023-00770-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023] Open
Abstract
Science and art have been connected for centuries. With the development of new computational methods, new scientific disciplines have emerged, such as computational chemistry, and related fields, such as cheminformatics. Chemoinformatics is grounded on the chemical space concept: a multi-descriptor space in which chemical structures are described. In several practical applications, visual representations of the chemical space of compound datasets are low-dimensional plots helpful in identifying patterns. However, the authors propose that the plots can also be used as artistic expressions. This manuscript introduces an approach to merging art with chemoinformatics through visual and artistic representations of chemical space. As case studies, we portray the chemical space of food chemicals and other compounds to generate visually appealing graphs with twofold benefits: sharing chemical knowledge and developing pieces of art driven by chemoinformatics. The art driven by chemical space visualization will help increase the application of chemistry and art and contribute to general education and dissemination of chemoinformatics and chemistry through artistic expressions. All the code and data sets to reproduce the visual representation of the chemical space presented in the manuscript are freely available at https://github.com/DIFACQUIM/Art-Driven-by-Visual-Representations-of-Chemical-Space- . Scientific contribution: Chemical space as a concept to create digital art and as a tool to train and introduce students to cheminformatics.
Collapse
Affiliation(s)
- Daniela Gaytán-Hernández
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, 04510, Mexico City, Mexico
| | - Ana L Chávez-Hernández
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, 04510, Mexico City, Mexico
| | - Edgar López-López
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, 04510, Mexico City, Mexico
- Department of Chemistry and Graduate Program in Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute, 07000, Mexico City, Mexico
| | - Jazmín Miranda-Salas
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, 04510, Mexico City, Mexico
| | - Fernanda I Saldívar-González
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, 04510, Mexico City, Mexico
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, 04510, Mexico City, Mexico.
| |
Collapse
|