1
|
Uemura N. Fibril-seeded animal models of synucleinopathies: pathological mechanisms, disease modeling, and therapeutic implications. Neurosci Res 2025:S0168-0102(25)00082-3. [PMID: 40316176 DOI: 10.1016/j.neures.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/22/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
Accumulating evidence suggests that prion-like spread of misfolded α-Synuclein (αSyn) underlies the pathological progression of Lewy body diseases (LBD). Animal models injected with αSyn preformed fibrils (PFFs) have provided strong evidence for the prion hypothesis in LBD. Moreover, αSyn PFFs can be administered to various hosts and regions, contributing to the elucidation of pathological mechanisms and disease modeling. These models have also been used to identify biomarkers and develop new disease-modifying therapies for LBD. In contrast, it remains unknown how the prion-like properties of αSyn contribute to the pathogenesis of multiple system atrophy (MSA). Recent studies indicate that conformationally distinct αSyn fibrils induce different pathological features in animals, supporting the strain hypothesis, which suggests that conformational variations in αSyn fibrils contribute to the clinicopathological heterogeneity in synucleinopathies. However, the study of disease-specific αSyn fibrils in pathological mechanisms and disease modeling is still in its early stages. This review aims to highlight recent advances in αSyn fibril-seeded animal models with an emphasis on their unique features and utility in exploring pathological mechanisms and identifying novel disease-modifying therapies. In addition, I discuss future directions for refining these models in light of the emerging strain hypothesis in synucleinopathies.
Collapse
Affiliation(s)
- Norihito Uemura
- Department of Neurological Disease Control, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, JAPAN; Department of Therapeutics for Multiple System Atrophy, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyoku, Kyoto 606-8507, JAPAN.
| |
Collapse
|
2
|
Krismer F, Fanciulli A, Meissner WG, Coon EA, Wenning GK. Multiple system atrophy: advances in pathophysiology, diagnosis, and treatment. Lancet Neurol 2024; 23:1252-1266. [PMID: 39577925 DOI: 10.1016/s1474-4422(24)00396-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 11/24/2024]
Abstract
Multiple system atrophy is an adult-onset, sporadic, and progressive neurodegenerative disease. People with this disorder report a wide range of motor and non-motor symptoms. Overlap in the clinical presentation of multiple system atrophy with other movement disorders (eg, Parkinson's disease and progressive supranuclear palsy) is a concern for accurate and timely diagnosis. Over the past 5 years, progress has been made in understanding key pathophysiological events in multiple system atrophy, including the seeding of α-synuclein inclusions and the detection of disease-specific α-synuclein strains. Diagnostic criteria were revised in 2022 with the intention to improve the accuracy of a diagnosis of multiple system atrophy, particularly for early disease stages. Early signals of efficacy in clinical trials have indicated the potential for disease-modifying therapies for multiple system atrophy, although no trial has yet provided unequivocal evidence of neuroprotection in this rare disease. The advances in pathophysiology could play a part in biomarker discovery for early diagnosis as well as in the development of disease-modifying therapies.
Collapse
Affiliation(s)
- Florian Krismer
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria.
| | | | - Wassilios G Meissner
- Centre Hospitalier Universitaire Bordeaux, Service de Neurologie des Maladies Neurodégénératives, Institut des Maladies Neurodégénératives Clinique, French Clinical Research Network for Parkinson's Disease and Movement Disorders, Bordeaux, France; Université de Bordeaux, Centre National de la Recherche Scientifique, Institut des Maladies Neurodégénératives, Unité Mixte de Recherche 5293, Bordeaux, France; Department of Medicine, University of Otago, Christchurch, New Zealand; New Zealand Brain Research Institute, Christchurch, New Zealand
| | | | - Gregor K Wenning
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Wall RV, Basavarajappa D, Klistoner A, Graham S, You Y. Mechanisms of Transsynaptic Degeneration in the Aging Brain. Aging Dis 2024; 15:2149-2167. [PMID: 39191395 PMCID: PMC11346400 DOI: 10.14336/ad.2024.03019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/19/2024] [Indexed: 08/29/2024] Open
Abstract
A prominent feature in many neurodegenerative diseases involves the spread of the pathology from the initial site of damage to anatomically and functionally connected regions of the central nervous system (CNS), referred to as transsynaptic degeneration (TSD). This review covers the possible mechanisms of both retrograde and anterograde TSD in various age-related neurodegenerative diseases, including synaptically and glial mediated changes contributing to TDS and their potential as therapeutic targets. This phenomenon is well documented in clinical and experimental studies spanning various neurodegenerative diseases and their respective models, with a significant emphasis on the visual pathway, to be explored herein. With the increase in the aging population and subsequent rise in age-related neurodegenerative diseases, it is crucial to understand the underlying mechanisms of.
Collapse
Affiliation(s)
- Roshana Vander Wall
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Alexander Klistoner
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Stuart Graham
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Save Sight Institute, Sydney University, Sydney, NSW, 2000, Australia
| | - Yuyi You
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Save Sight Institute, Sydney University, Sydney, NSW, 2000, Australia
| |
Collapse
|
4
|
Sagredo GT, Tanglay O, Shahdadpuri S, Fu Y, Halliday GM. ⍺-Synuclein levels in Parkinson's disease - Cell types and forms that contribute to pathogenesis. Exp Neurol 2024; 379:114887. [PMID: 39009177 DOI: 10.1016/j.expneurol.2024.114887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Parkinson's disease (PD) has two main pathological hallmarks, the loss of nigral dopamine neurons and the proteinaceous aggregations of ⍺-synuclein (⍺Syn) in neuronal Lewy pathology. These two co-existing features suggest a causative association between ⍺Syn aggregation and the underpinning mechanism of neuronal degeneration in PD. Both increased levels and post-translational modifications of ⍺Syn can contribute to the formation of pathological aggregations of ⍺Syn in neurons. Recent studies have shown that the protein is also expressed by multiple types of non-neuronal cells in the brain and peripheral tissues, suggesting additional roles of the protein and potential diversity in non-neuronal pathogenic triggers. It is important to determine (1) the threshold levels triggering ⍺Syn to convert from a biological to a pathologic form in different brain cells in PD; (2) the dominant form of pathologic ⍺Syn and the associated post-translational modification of the protein in each cell type involved in PD; and (3) the cell type associated biological processes impacted by pathologic ⍺Syn in PD. This review integrates these aspects and speculates on potential pathological mechanisms and their impact on neuronal and non-neuronal ⍺Syn in the brains of patients with PD.
Collapse
Affiliation(s)
- Giselle Tatiana Sagredo
- The University of Sydney, Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, Sydney, NSW, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Onur Tanglay
- The University of Sydney, Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, Sydney, NSW, Australia
| | - Shrey Shahdadpuri
- The University of Sydney, Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, Sydney, NSW, Australia
| | - YuHong Fu
- The University of Sydney, Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, Sydney, NSW, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Glenda M Halliday
- The University of Sydney, Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, Sydney, NSW, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America.
| |
Collapse
|
5
|
Oláh J, Norris V, Lehotzky A, Ovádi J. Perspective Strategies for Interventions in Parkinsonism: Remedying the Neglected Role of TPPP. Cells 2024; 13:338. [PMID: 38391951 PMCID: PMC10886726 DOI: 10.3390/cells13040338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Neurological disorders such as Parkinsonism cause serious socio-economic problems as there are, at present, only therapies that treat their symptoms. The well-established hallmark alpha-synuclein (SYN) is enriched in the inclusion bodies characteristic of Parkinsonism. We discovered a prominent partner of SYN, termed Tubulin Polymerization Promoting Protein (TPPP), which has important physiological and pathological activities such as the regulation of the microtubule network and the promotion of SYN aggregation. The role of TPPP in Parkinsonism is often neglected in research, which we here attempt to remedy. In the normal brain, SYN and TPPP are expressed endogenously in neurons and oligodendrocytes, respectively, whilst, at an early stage of Parkinsonism, soluble hetero-associations of these proteins are found in both cell types. The cell-to-cell transmission of these proteins, which is central to disease progression, provides a unique situation for specific drug targeting. Different strategies for intervention and for the discovery of biomarkers include (i) interface targeting of the SYN-TPPP hetero-complex; (ii) proteolytic degradation of SYN and/or TPPP using the PROTAC technology; and (iii) depletion of the proteins by miRNA technology. We also discuss the potential roles of SYN and TPPP in the phenotype stabilization of neurons and oligodendrocytes.
Collapse
Affiliation(s)
- Judit Oláh
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.L.); (J.O.)
| | - Vic Norris
- Laboratory of Bacterial Communication and Anti-Infection Strategies, EA 4312, University of Rouen, 76821 Mont Saint Aignan, France;
| | - Attila Lehotzky
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.L.); (J.O.)
| | - Judit Ovádi
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.L.); (J.O.)
| |
Collapse
|
6
|
Cheng A, Jia W, Finkelstein DI, Stefanova N, Wang H, Sasaki T, Kawahata I, Fukunaga K. Pharmacological inhibition of FABP7 by MF 6 counteracts cerebellum dysfunction in an experimental multiple system atrophy mouse model. Acta Pharmacol Sin 2024; 45:66-75. [PMID: 37605049 PMCID: PMC10770047 DOI: 10.1038/s41401-023-01138-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/09/2023] [Indexed: 08/23/2023]
Abstract
Multiple system atrophy (MSA) is a rare, fatal neurodegenerative disease characterized by the accumulation of misfolded α-synuclein (αSyn) in glial cells, leading to the formation of glial cytoplasmic inclusions (GCI). We previous found that glial fatty acid-binding protein 7 (FABP7) played a crucial role in alpha-synuclein (αSyn) aggregation and toxicity in oligodendrocytes, inhibition of FABP7 by a specific inhibitor MF 6 reduced αSyn aggregation and enhanced cell viability in cultured cell lines and mouse oligodendrocyte progenitor cells. In this study we investigated whether MF 6 ameliorated αSyn-associated pathological processes in PLP-hαSyn transgenic mice (PLP-αSyn mice), a wildly used MSA mouse model with overexpressing αSyn in oligodendroglia under the proteolipid protein (PLP) promoter. PLP-αSyn mice were orally administered MF6 (0.1, 1 mg ·kg-1 ·d-1) for 32 days starting from the age of 6 months. We showed that oral administration of MF 6 significantly improved motor function assessed in a pole test, and reduced αSyn aggregation levels in both cerebellum and basal ganglia of PLP-αSyn mice. Moreover, MF 6 administration decreased oxidative stress and inflammation levels, and improved myelin levels and Purkinje neuron morphology in the cerebellum. By using mouse brain tissue slices and αSyn aggregates-treated KG-1C cells, we demonstrated that MF 6 reduced αSyn propagation to Purkinje neurons and oligodendrocytes through regulating endocytosis. Overall, these results suggest that MF 6 improves cerebellar functions in MSA by inhibiting αSyn aggregation and propagation. We conclude that MF 6 is a promising compound that warrants further development for the treatment of MSA.
Collapse
Affiliation(s)
- An Cheng
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, USA.
| | - Wenbin Jia
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - David I Finkelstein
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Nadia Stefanova
- Laboratory for Translational Neurodegeneration Research, Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Haoyang Wang
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ichiro Kawahata
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
7
|
Benarroch E. What Are the Roles of Oligodendrocyte Precursor Cells in Normal and Pathologic Conditions? Neurology 2023; 101:958-965. [PMID: 37985182 PMCID: PMC10663025 DOI: 10.1212/wnl.0000000000208000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 11/22/2023] Open
|
8
|
Forloni G. Alpha Synuclein: Neurodegeneration and Inflammation. Int J Mol Sci 2023; 24:ijms24065914. [PMID: 36982988 PMCID: PMC10059798 DOI: 10.3390/ijms24065914] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Alpha-Synuclein (α-Syn) is one of the most important molecules involved in the pathogenesis of Parkinson's disease and related disorders, synucleinopathies, but also in several other neurodegenerative disorders with a more elusive role. This review analyzes the activities of α-Syn, in different conformational states, monomeric, oligomeric and fibrils, in relation to neuronal dysfunction. The neuronal damage induced by α-Syn in various conformers will be analyzed in relation to its capacity to spread the intracellular aggregation seeds with a prion-like mechanism. In view of the prominent role of inflammation in virtually all neurodegenerative disorders, the activity of α-Syn will also be illustrated considering its influence on glial reactivity. We and others have described the interaction between general inflammation and cerebral dysfunctional activity of α-Syn. Differences in microglia and astrocyte activation have also been observed when in vivo the presence of α-Syn oligomers has been combined with a lasting peripheral inflammatory effect. The reactivity of microglia was amplified, while astrocytes were damaged by the double stimulus, opening new perspectives for the control of inflammation in synucleinopathies. Starting from our studies in experimental models, we extended the perspective to find useful pointers to orient future research and potential therapeutic strategies in neurodegenerative disorders.
Collapse
Affiliation(s)
- Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| |
Collapse
|
9
|
Role of Oligodendrocyte Lineage Cells in Multiple System Atrophy. Cells 2023; 12:cells12050739. [PMID: 36899876 PMCID: PMC10001068 DOI: 10.3390/cells12050739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Multiple system atrophy (MSA) is a debilitating movement disorder with unknown etiology. Patients present characteristic parkinsonism and/or cerebellar dysfunction in the clinical phase, resulting from progressive deterioration in the nigrostriatal and olivopontocerebellar regions. MSA patients have a prodromal phase subsequent to the insidious onset of neuropathology. Therefore, understanding the early pathological events is important in determining the pathogenesis, which will assist with developing disease-modifying therapy. Although the definite diagnosis of MSA relies on the positive post-mortem finding of oligodendroglial inclusions composed of α-synuclein, only recently has MSA been verified as an oligodendrogliopathy with secondary neuronal degeneration. We review up-to-date knowledge of human oligodendrocyte lineage cells and their association with α-synuclein, and discuss the postulated mechanisms of how oligodendrogliopathy develops, oligodendrocyte progenitor cells as the potential origins of the toxic seeds of α-synuclein, and the possible networks through which oligodendrogliopathy induces neuronal loss. Our insights will shed new light on the research directions for future MSA studies.
Collapse
|