1
|
Su Z, Yu H, Lv T, Chen Q, Luo H, Zhang H. Progress in the classification, optimization, activity, and application of antimicrobial peptides. Front Microbiol 2025; 16:1582863. [PMID: 40336834 PMCID: PMC12055553 DOI: 10.3389/fmicb.2025.1582863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/03/2025] [Indexed: 05/09/2025] Open
Abstract
Antimicrobial peptides (AMPs) come from various sources and exhibit unique antimicrobial properties. Their rapid action, effectiveness, and resistance to resistance development make them promising alternatives to combat antibiotic resistance. In addition to its excellent antibacterial properties, AMPs have superior immunomodulatory, antitumor, and antiviral activities. In recent years, the demand for AMPs has continued to increase in many fields, especially in the medical field, and the prospects are extensive. However, AMPs have the disadvantages of expensive development cost, higher hemolysis, short half-life, susceptibility to degradation by protein hydrolases, low bioavailability, toxic side effects, and other disadvantages, which seriously limit the wide application of AMPs. Therefore, fewer AMPs have been approved for marketing or are undergoing clinical trials. The review covers the period from 2001 to 2025 and provides a detailed discussion by searching databases such as Google Scholar and Web of Science. This paper reviews the progress of research on AMPs sources, structures, optimization strategies, biological activities, mechanisms of action, and applications. In general, the development approaches and the number of new AMPs have increased significantly. The improvement technologies for AMPs high hemolysis, poor stability, low bioavailability and high cost have increased significantly. The development cost of AMPs is still high, but many AMPs have been widely used in clinical, food, livestock, poultry, cosmetics and other fields. This article focuses on the commonly used optimization strategies and main activities of AMPs, aiming to effectively respond to challenges and provide a theoretical basis for expanding their application range.
Collapse
Affiliation(s)
- Zuheng Su
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Huajun Yu
- Guangdong Medical University, Zhanjiang, China
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Tingting Lv
- Department of Neurology, Huazhou People's Hospital, Huazhou, China
| | - Qizhou Chen
- Guangdong Medical University, Zhanjiang, China
| | - Hui Luo
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Haitao Zhang
- Guangdong Medical University, Zhanjiang, China
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
2
|
Xiao B, Wang J, Xing J, He L, Xu C, Wu A, Li J. Unlocking the Potential of Antimicrobial Peptides: Cutting-Edge Advances and Therapeutic Potential in Combating Bacterial Keratitis. Bioconjug Chem 2025; 36:311-331. [PMID: 39970053 DOI: 10.1021/acs.bioconjchem.4c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Bacterial keratitis is a prevalent, and severe corneal illness resulting from bacterial pathogens. Failure to administer a timely and suitable therapy may lead to corneal opacity, ulceration, significant vision impairment, or potential blindness. Current clinical interventions for bacterial keratitis involve the administration of topical antimicrobial agents and systemic antibiotics. However, the misuse and overuse of antibiotics have led to the rapid emergence of antibiotic-resistant bacteria. Additionally, the restricted antibacterial spectrum and possible adverse effects of antibiotics have provided considerable obstacles to traditional therapies. This highlights the urgent need for novel and highly effective antimicrobial agents. Antimicrobial peptides (AMPs) are a class of naturally occurring or synthetically designed small molecules that have gained significant attention due to their unique antimicrobial mechanisms and low risk of resistance development. AMPs exhibit promising potential in treating bacterial keratitis through direct antibacterial mechanisms, such as inhibiting cell wall synthesis, disrupting cell membranes, and interfering with nucleic acid metabolism, as well as indirect mechanisms, including modulation of the host immune response. This review provides a comprehensive overview of the antibacterial mechanisms of AMPs and their advancements in the treatment of bacterial keratitis. It emphasizes the role of various modification strategies and artificial-intelligence-assisted design in enhancing the antibacterial efficacy, stability, and biocompatibility of AMPs. Furthermore, this review discusses the latest progress in combining AMPs with delivery systems for improved therapeutic outcomes. Finally, the review highlights the current challenges and future perspectives of AMPs in bacterial keratitis treatment, providing valuable insights for developing novel AMPs with high antibacterial efficacy, stability, and safety for bacterial keratitis therapies.
Collapse
Affiliation(s)
- Bingru Xiao
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315300, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Jie Wang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315300, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Jie Xing
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Lulu He
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Chen Xu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315300, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Aiguo Wu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315300, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Juan Li
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315300, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| |
Collapse
|
3
|
Omidian H, Wilson RL, Castejon AM. Recent Advances in Peptide-Loaded PLGA Nanocarriers for Drug Delivery and Regenerative Medicine. Pharmaceuticals (Basel) 2025; 18:127. [PMID: 39861188 PMCID: PMC11768227 DOI: 10.3390/ph18010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Peptide-loaded poly(lactide-co-glycolide) (PLGA) nanocarriers represent a transformative approach to addressing the challenges of peptide-based therapies. These systems offer solutions to peptide instability, enzymatic degradation, and limited bioavailability by providing controlled release, targeted delivery, and improved stability. The versatility of PLGA nanocarriers extends across therapeutic domains, including cancer therapy, neurodegenerative diseases, vaccine development, and regenerative medicine. Innovations in polymer chemistry, surface functionalization, and advanced manufacturing techniques, such as microfluidics and electrospraying, have further enhanced the efficacy and scalability of these systems. This review highlights the key physicochemical properties, preparation strategies, and proven benefits of peptide-loaded PLGA systems, emphasizing their role in sustained drug release, immune activation, and tissue regeneration. Despite remarkable progress, challenges such as production scalability, cost, and regulatory hurdles remain.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (R.L.W.); (A.M.C.)
| | | | | |
Collapse
|
4
|
Asghari Baghkheirati A, Golmohammadi R, Sekhavati MH, Razmyar J, Abyazi MA. Recombinant Antimicrobial Peptides (rAMPs); Potential Applications in Medicine and Veterinary Medicine: A Review. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3913. [PMID: 40225299 PMCID: PMC11993234 DOI: 10.30498/ijb.2024.455700.3913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/30/2024] [Indexed: 04/15/2025]
Abstract
Antibiotic resistance has become a major public health concern worldwide. Treatment of humans and animals is becoming increasingly challenging due to antibiotic resistance. Antibiotic-resistant bacteria can be transmitted from animals to humans by several routes, including direct contact, contaminated food or water, or environmental exposure. Various factors contribute to the rising problem, such as the widespread and indiscriminate exploitation of antimicrobials in both human and animal healthcare, over-prescription, misuse of antibiotics, the role of agriculture in spreading antibiotic resistance, and poor animal husbandry practices. According to the preliminary findings, recombinant antimicrobial peptides are an interesting novel area of biotechnology and medical innovation that might be employed as a secure and effective substitute for antibiotics. In this review study, we briefly examine the factors contributing to the rise of antibiotic resistance. We then introduce and discuss recombinant antimicrobial peptides as a promising strategy to address this growing problem.
Collapse
Affiliation(s)
- Amir Asghari Baghkheirati
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Department of Avian Health and Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Reza Golmohammadi
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Sekhavati
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Jamshid Razmyar
- Department of Avian Health and Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Ali Abyazi
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Jiao X, Liu B, Dong X, Wang S, Cai X, Zhang H, Qin Z. Exploring PLGA-OH-CATH30 Microspheres for Oral Therapy of Escherichia coli-Induced Enteritis. Biomolecules 2024; 14:86. [PMID: 38254686 PMCID: PMC10813405 DOI: 10.3390/biom14010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Antibiotic therapy effectively addresses Escherichia coli-induced enteric diseases, but its excessive utilization results in microbial imbalance and heightened resistance. This study evaluates the therapeutic efficacy of orally administered poly (lactic-co-glycolic acid) (PLGA)-loaded antimicrobial peptide OH-CATH30 microspheres in murine bacterial enteritis. Mice were categorized into the healthy control group (CG), untreated model group (MG), OH-CATH30 treatment group (OC), PLGA-OH-CATH30 treatment group (POC), and gentamicin sulfate treatment group (GS). Except for the control group, all other experimental groups underwent Escherichia coli-induced enteritis, followed by a 5-day treatment period. The evaluation encompassed clinical symptoms, intestinal morphology, blood parameters, inflammatory response, and gut microbiota. PLGA-OH-CATH30 microspheres significantly alleviated weight loss and intestinal damage while also reducing the infection-induced increase in spleen index. Furthermore, these microspheres normalized white blood cell count and neutrophil ratio, suppressed inflammatory factors (IL-1β, IL-6, and TNF-α), and elevated the anti-inflammatory factor IL-10. Analysis of 16S rRNA sequencing results demonstrated that microsphere treatment increased the abundance of beneficial bacteria, including Phocaeicola vulgatus, in the intestinal tract while concurrently decreasing the abundance of pathogenic bacteria, such as Escherichia. In conclusion, PLGA-OH-CATH30 microspheres have the potential to ameliorate intestinal damage and modulate the intestinal microbiota, making them a promising alternative to antibiotics for treating enteric diseases induced by Escherichia coli.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhihua Qin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (X.J.); (B.L.); (X.D.); (S.W.); (X.C.); (H.Z.)
| |
Collapse
|