1
|
Hao G, Zhou L, Liu H, Kachroo P, Hunt AG. Revisiting CPSF30-mediated alternative polyadenylation in Arabidopsis thaliana. PLoS One 2025; 20:e0319180. [PMID: 39992955 PMCID: PMC11849871 DOI: 10.1371/journal.pone.0319180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
Alternative polyadenylation (APA) is an important contributor to the regulation of gene expression in plants. One subunit of the complex that cleaves and polyadenylates mRNAs in the nucleus, CPSF30 (for the 30 kD subunit of the mammalian Cleavage and Polyadenylation Specificity Factor), has been implicated in a wide-ranging network of regulatory events. CPSF30 plays roles in root development, flowering time, and response to biotic and abiotic stresses. CPSF30 also is a conduit that links cellular signaling and RNA modification with alternative RNA processing events and transcriptional dynamics. While much is known about CPSF30 and its roles in plants, questions remain regarding the connections between CPSF30-mediated APA and the downstream events that lead to specific phenotypic outcomes. To address these, we conducted a detailed analysis of poly(A) site usage in the CPSF30 mutant. Our results corroborate earlier reports that link CPSF30 with a distinctive cis element (AAUAAA) that is present 10-30 nts upstream of some, but not all, plant pre-mRNAs. Interestingly, our results reveal a distinctive shift in poly(A) site in mutants deficient in CPSF30, resulting in cleavage and polyadenylation at the location of motifs similar to AAUAAA. Importantly, CPSF30-associated APA had at best a small impact on mRNA functionality. These results necessitate the formulation of new hypotheses for mechanisms by which CPSF30-mediated APA influences physiological processes.
Collapse
Affiliation(s)
- Guijie Hao
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - Lichun Zhou
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - Huazhen Liu
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Arthur G. Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
2
|
Catacalos-Goad C, Chakrabarti M, Salem DH, Camporeale C, Somalraju S, Tegowski M, Singh R, Reid RW, Janies DA, Meyer KD, Janga SC, Hunt AG, Chakrabarti K. Nucleotide-resolution Mapping of RNA N6-Methyladenosine (m6A) modifications and comprehensive analysis of global polyadenylation events in mRNA 3' end processing in malaria pathogen Plasmodium falciparum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631827. [PMID: 39829786 PMCID: PMC11741415 DOI: 10.1101/2025.01.07.631827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Plasmodium falciparum is an obligate human parasite of the phylum Apicomplexa and is the causative agent of the most lethal form of human malaria. Although N6-methyladenosine modification is thought to be one of the major post-transcriptional regulatory mechanisms for stage-specific gene expression in apicomplexan parasites, the precise base position of m6A in mRNAs or noncoding RNAs in these parasites remains unknown. Here, we report global nucleotide-resolution mapping of m6A residues in P. falciparum using DART-seq technology, which quantitatively displayed a stage-specific, dynamic distribution pattern with enrichment near mRNA 3' ends. In this process we identified 894, 788, and 1,762 m6A-modified genes in Ring, Trophozoite and Schizont stages respectively, with an average of 5-7 m6A sites per-transcript at the individual gene level. Notably, several genes involved in malaria pathophysiology, such as KAHRP, ETRAMPs, SERA and stress response genes, such as members of Heat Shock Protein (HSP) family are highly enriched in m6A and therefore could be regulated by this RNA modification. Since we observed preferential methylation at the 3' ends of P. falciparum transcripts and because malaria polyadenylation specificity factor PfCPSF30 harbors an m6A reader 'YTH' domain, we reasoned that m6A might play an important role in 3'-end processing of malaria mRNAs. To investigate this, we used two complementary high-throughput RNA 3'-end mapping approaches, which provided an initial framework to explore potential roles of m6A in the regulation of alternative polyadenylation (APA) during malaria development in human hosts.
Collapse
Affiliation(s)
- Cassandra Catacalos-Goad
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, USA, United States of America
| | - Manohar Chakrabarti
- School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Edinburg, TX
| | - Doaa Hassan Salem
- Department of Biomedical Engineering and Informatics, Luddy School of Informatics, Computing and Engineering, Indiana University Indianapolis (IUI), Indianapolis, Indiana, United States of America
| | - Carli Camporeale
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, USA, United States of America
| | - Sahiti Somalraju
- Department of Biomedical Engineering and Informatics, Luddy School of Informatics, Computing and Engineering, Indiana University Indianapolis (IUI), Indianapolis, Indiana, United States of America
| | - Matthew Tegowski
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Ruchi Singh
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, USA, United States of America
| | - Robert W Reid
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Daniel A Janies
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Kate D Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sarath Chandra Janga
- Department of Biomedical Engineering and Informatics, Luddy School of Informatics, Computing and Engineering, Indiana University Indianapolis (IUI), Indianapolis, Indiana, United States of America
| | - Arthur G Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA, United States of America
| | - Kausik Chakrabarti
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, USA, United States of America
| |
Collapse
|
3
|
Wei Y, Yuan Q, Alshaya DS, Waheed A, Attia KA, Fiaz S, Iqbal MS. Characterizing the impact of CPSF30 gene disruption on TuMV infection in Arabidopsis thaliana. GM CROPS & FOOD 2024; 15:1-17. [PMID: 39351907 PMCID: PMC11445912 DOI: 10.1080/21645698.2024.2403776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/03/2024]
Abstract
CPSF30, a key polyadenylation factor, also serves as an m6A reader, playing a crucial role in determining RNA fate post-transcription. While its homologs mammals are known to be vital for viral replication and immune evasion, the full scope of CPSF30 in plant, particular in viral regulation, remains less explored. Our study demonstrates that CPSF30 significantly facilitates the infection of turnip mosaic virus (TuMV) in Arabidopsis thaliana, as evidenced by infection experiments on the engineered cpsf30 mutant. Among the two isoforms, CPSF30-L, which were characterized with m6A binding activity, emerged as the primary isoform responding to TuMV infection. Analysis of m6A components revealed potential involvement of the m6A machinery in regulating TuMV infection. In contrast, CPSF30-S exhibited distinct subcellular localization, coalescing with P-body markers (AtDCP1 and AtDCP2) in cytoplasmic granules, suggesting divergent regulatory mechanisms between the isoforms. Furthermore, comprehensive mRNA-Seq and miRNA-Seq analysis of Col-0 and cpsf30 mutants revealed global transcriptional reprogramming, highlighting CPSF30's role in selectively modulating gene expression during TuMV infection. In conclusion, this research underscores CPSF30's critical role in the TuMV lifecycle and sets the stage for further exploration of its function in plant viral regulation.
Collapse
Affiliation(s)
- Yanping Wei
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Quan Yuan
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Dalal Sulaiman Alshaya
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdul Waheed
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Kotb A. Attia
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh, Saudi Arabia
| | - Sajid Fiaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Shahid Iqbal
- Agricultural Genomics Institute at Shenzhen (AGIS), Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| |
Collapse
|
4
|
Ou J, Liu H, Park S, Green MR, Zhu LJ. InPAS: An R/Bioconductor Package for Identifying Novel Polyadenylation Sites and Alternative Polyadenylation from Bulk RNA-seq Data. Front Biosci (Schol Ed) 2024; 16:21. [PMID: 39736014 DOI: 10.31083/j.fbs1604021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/20/2024] [Accepted: 10/10/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND Alternative cleavage and polyadenylation (APA) is a crucial post-transcriptional gene regulation mechanism that regulates gene expression in eukaryotes by increasing the diversity and complexity of both the transcriptome and proteome. Despite the development of more than a dozen experimental methods over the last decade to identify and quantify APA events, widespread adoption of these methods has been limited by technical, financial, and time constraints. Consequently, APA remains poorly understood in most eukaryotes. However, RNA sequencing (RNA-seq) technology has revolutionized transcriptome profiling and recent studies have shown that RNA-seq data can be leveraged to identify and quantify APA events. RESULTS To fully capitalize on the exponentially growing RNA-seq data, we developed InPAS (Identification of Novel alternative PolyAdenylation Sites), an R/Bioconductor package for accurate identification of novel and known cleavage and polyadenylation sites (CPSs), as well as quantification of APA from RNA-seq data of various experimental designs. Compared to other APA analysis tools, InPAS offers several important advantages, including the ability to detect both novel proximal and distal CPSs, to fine tune positions of CPSs using a naïve Bayes classifier based on flanking sequence features, and to identify APA events from RNA-seq data of complex experimental designs using linear models. We benchmarked the performance of InPAS and other leading tools using simulated and experimental RNA-seq data with matched 3'-end RNA-seq data. Our results reveal that InPAS frequently outperforms existing tools in terms of precision, sensitivity, and specificity. Furthermore, we demonstrate its scalability and versatility by applying it to large, diverse RNA-seq datasets. CONCLUSIONS InPAS is an efficient and robust tool for identifying and quantifying APA events using readily accessible conventional RNA-seq data. Its versatility opens doors to explore APA regulation across diverse eukaryotic systems with various experimental designs. We believe that InPAS will drive APA research forward, deepening our understanding of its role in regulating gene expression, and potentially leading to the discovery of biomarkers or therapeutics for diseases.
Collapse
Affiliation(s)
- Jianhong Ou
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Regeneration Center, Duke University School of Medicine, Duke University, Durham, NC 27701, USA
| | - Haibo Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sungmi Park
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Michael R Green
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
5
|
Jing S, Yang J, Liu Y, Wang F, Zheng F, Ren A, Yu B, Zhao Y, Jia B, Chen R, Yu B, Liu Q, Xu J. Functional Analysis of CPSF30 in Nilaparvata lugens Using RNA Interference Reveals Its Essential Role in Development and Survival. INSECTS 2024; 15:860. [PMID: 39590459 PMCID: PMC11594811 DOI: 10.3390/insects15110860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/27/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024]
Abstract
The brown planthopper (Nilaparvata lugens) is a major pest threatening global rice production, significantly reducing yields annually. As N. lugens increasingly develops resistance to conventional control methods, such as chemical pesticides, there is an urgent need for innovative and sustainable pest management strategies. Cleavage and Polyadenylation Specificity Factor 30 (CPSF30) is a key protein involved in mRNA 3' end processing, yet its function in N. lugens remains poorly understood. This study aims to elucidate the role of CPSF30 in the growth and development of N. lugens and evaluate its potential as a target for RNA interference (RNAi)-based pest control strategies. We cloned and characterized the cDNA sequence of NlCPSF30, which encodes a protein of 341 amino acids containing five CCCH zinc-finger domains and two CCHC zinc-knuckle domains. Sequence alignment revealed that NlCPSF30 is highly conserved among insect species, particularly in the zinc-finger domains essential for RNA binding and processing. Phylogenetic analysis showed that NlCPSF30 is closely related to CPSF30 proteins from other hemipteran species. Expression analysis indicated that NlCPSF30 is most highly expressed in the fat body and during the adult stage, with significantly higher expression in females than in males. RNAi-mediated silencing of NlCPSF30 in third-instar nymphs resulted in severe phenotypic abnormalities, including disrupted molting and increased mortality following injection of double-stranded RNA (dsRNA) targeting NlCPSF30. Moreover, it influenced the expression of genes associated with hormone regulation, namely NlHry, NlE93, and NlKr-h1. These results suggest that NlCPSF30 is integral to critical physiological processes, with its disruption leading to increased mortality. Our findings identify NlCPSF30 as an essential gene for N. lugens' survival and a promising target for RNAi-based pest management strategies. This study provides a valuable molecular target and theoretical insights for developing RNAi-based control methods against N. lugens.
Collapse
Affiliation(s)
- Shengli Jing
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China; (S.J.); (J.Y.); (Y.L.); (F.W.); (F.Z.); (A.R.); (B.Y.); (Y.Z.); (B.J.); (R.C.); (B.Y.); (Q.L.)
| | - Jing Yang
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China; (S.J.); (J.Y.); (Y.L.); (F.W.); (F.Z.); (A.R.); (B.Y.); (Y.Z.); (B.J.); (R.C.); (B.Y.); (Q.L.)
| | - Yali Liu
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China; (S.J.); (J.Y.); (Y.L.); (F.W.); (F.Z.); (A.R.); (B.Y.); (Y.Z.); (B.J.); (R.C.); (B.Y.); (Q.L.)
| | - Feifei Wang
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China; (S.J.); (J.Y.); (Y.L.); (F.W.); (F.Z.); (A.R.); (B.Y.); (Y.Z.); (B.J.); (R.C.); (B.Y.); (Q.L.)
| | - Fang Zheng
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China; (S.J.); (J.Y.); (Y.L.); (F.W.); (F.Z.); (A.R.); (B.Y.); (Y.Z.); (B.J.); (R.C.); (B.Y.); (Q.L.)
| | - Aobo Ren
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China; (S.J.); (J.Y.); (Y.L.); (F.W.); (F.Z.); (A.R.); (B.Y.); (Y.Z.); (B.J.); (R.C.); (B.Y.); (Q.L.)
| | - Bingbing Yu
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China; (S.J.); (J.Y.); (Y.L.); (F.W.); (F.Z.); (A.R.); (B.Y.); (Y.Z.); (B.J.); (R.C.); (B.Y.); (Q.L.)
| | - Yue Zhao
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China; (S.J.); (J.Y.); (Y.L.); (F.W.); (F.Z.); (A.R.); (B.Y.); (Y.Z.); (B.J.); (R.C.); (B.Y.); (Q.L.)
| | - Bing Jia
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China; (S.J.); (J.Y.); (Y.L.); (F.W.); (F.Z.); (A.R.); (B.Y.); (Y.Z.); (B.J.); (R.C.); (B.Y.); (Q.L.)
| | - Ruixian Chen
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China; (S.J.); (J.Y.); (Y.L.); (F.W.); (F.Z.); (A.R.); (B.Y.); (Y.Z.); (B.J.); (R.C.); (B.Y.); (Q.L.)
| | - Bin Yu
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China; (S.J.); (J.Y.); (Y.L.); (F.W.); (F.Z.); (A.R.); (B.Y.); (Y.Z.); (B.J.); (R.C.); (B.Y.); (Q.L.)
| | - Qingsong Liu
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China; (S.J.); (J.Y.); (Y.L.); (F.W.); (F.Z.); (A.R.); (B.Y.); (Y.Z.); (B.J.); (R.C.); (B.Y.); (Q.L.)
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jingang Xu
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China; (S.J.); (J.Y.); (Y.L.); (F.W.); (F.Z.); (A.R.); (B.Y.); (Y.Z.); (B.J.); (R.C.); (B.Y.); (Q.L.)
| |
Collapse
|
6
|
Wang X, Wang X, Mu H, Zhao B, Song X, Fan H, Wang B, Yuan F. Global analysis of key post-transcriptional regulation in early leaf development of Limonium bicolor identifies a long non-coding RNA that promotes salt gland development and salt resistance. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5091-5110. [PMID: 38795330 DOI: 10.1093/jxb/erae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 05/23/2024] [Indexed: 05/27/2024]
Abstract
Limonium bicolor, known horticulturally as sea lavender, is a typical recretohalophyte with salt glands in its leaf epidermis that secrete excess Na+ out of the plant. Although many genes have been proposed to contribute to salt gland initiation and development, a detailed analysis of alternative splicing, alternative polyadenylation patterns, and long non-coding RNAs (lncRNAs) has been lacking. Here, we applied single-molecule long-read mRNA isoform sequencing (Iso-seq) to explore the complexity of the L. bicolor transcriptome in leaves during salt gland initiation (stage A) and salt gland differentiation (stage B) based on the reference genome. We identified alternative splicing events and the use of alternative poly(A) sites unique to stage A or stage B, leading to the hypothesis that they might contribute to the differentiation of salt glands. Based on the Iso-seq data and RNA in situ hybridization of candidate genes, we selected the lncRNA Btranscript_153392 for gene editing and virus-induced gene silencing to dissect its function. In the absence of this transcript, we observed fewer salt glands on the leaf epidermis, leading to diminished salt secretion and salt tolerance. Our data provide transcriptome resources for unraveling the mechanisms behind salt gland development and furthering crop transformation efforts towards enhanced survivability in saline soils.
Collapse
Affiliation(s)
- Xi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Xiaoyu Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Huiying Mu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Boqing Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Xianrui Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Hai Fan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, China
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, Shandong, China
| |
Collapse
|
7
|
Zhou L, Li K, Hunt AG. Natural variation in the plant polyadenylation complex. FRONTIERS IN PLANT SCIENCE 2024; 14:1303398. [PMID: 38317838 PMCID: PMC10839035 DOI: 10.3389/fpls.2023.1303398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
Messenger RNA polyadenylation, the process wherein the primary RNA polymerase II transcript is cleaved and a poly(A) tract added, is a key step in the expression of genes in plants. Moreover, it is a point at which gene expression may be regulated by determining the functionality of the mature mRNA. Polyadenylation is mediated by a complex (the polyadenylation complex, or PAC) that consists of between 15 and 20 subunits. While the general functioning of these subunits may be inferred by extending paradigms established in well-developed eukaryotic models, much remains to be learned about the roles of individual subunits in the regulation of polyadenylation in plants. To gain further insight into this, we conducted a survey of variability in the plant PAC. For this, we drew upon a database of naturally-occurring variation in numerous geographic isolates of Arabidopsis thaliana. For a subset of genes encoding PAC subunits, the patterns of variability included the occurrence of premature stop codons in some Arabidopsis accessions. These and other observations lead us to conclude that some genes purported to encode PAC subunits in Arabidopsis are actually pseudogenes, and that others may encode proteins with dispensable functions in the plant. Many subunits of the PAC showed patterns of variability that were consistent with their roles as essential proteins in the cell. Several other PAC subunits exhibit patterns of variability consistent with selection for new or altered function. We propose that these latter subunits participate in regulatory interactions important for differential usage of poly(A) sites.
Collapse
Affiliation(s)
| | | | - Arthur G. Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
8
|
Yang DL, Huang K, Deng D, Zeng Y, Wang Z, Zhang Y. DNA-dependent RNA polymerases in plants. THE PLANT CELL 2023; 35:3641-3661. [PMID: 37453082 PMCID: PMC10533338 DOI: 10.1093/plcell/koad195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 06/09/2023] [Accepted: 05/29/2023] [Indexed: 07/18/2023]
Abstract
DNA-dependent RNA polymerases (Pols) transfer the genetic information stored in genomic DNA to RNA in all organisms. In eukaryotes, the typical products of nuclear Pol I, Pol II, and Pol III are ribosomal RNAs, mRNAs, and transfer RNAs, respectively. Intriguingly, plants possess two additional Pols, Pol IV and Pol V, which produce small RNAs and long noncoding RNAs, respectively, mainly for silencing transposable elements. The five plant Pols share some subunits, but their distinct functions stem from unique subunits that interact with specific regulatory factors in their transcription cycles. Here, we summarize recent advances in our understanding of plant nucleus-localized Pols, including their evolution, function, structures, and transcription cycles.
Collapse
Affiliation(s)
- Dong-Lei Yang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Huang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Deyin Deng
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin’an, Hangzhou 311300, China
| | - Yuan Zeng
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhenxing Wang
- College of Horticulture, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
9
|
Swale C, Hakimi MA. 3'-end mRNA processing within apicomplexan parasites, a patchwork of classic, and unexpected players. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1783. [PMID: 36994829 DOI: 10.1002/wrna.1783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 03/31/2023]
Abstract
The 3'-end processing of mRNA is a co-transcriptional process that leads to the formation of a poly-adenosine tail on the mRNA and directly controls termination of the RNA polymerase II juggernaut. This process involves a megadalton complex composed of cleavage and polyadenylation specificity factors (CPSFs) that are able to recognize cis-sequence elements on nascent mRNA to then carry out cleavage and polyadenylation reactions. Recent structural and biochemical studies have defined the roles played by different subunits of the complex and provided a comprehensive mechanistic understanding of this machinery in yeast or metazoans. More recently, the discovery of small molecule inhibitors of CPSF function in Apicomplexa has stimulated interest in studying the specificities of this ancient eukaryotic machinery in these organisms. Although its function is conserved in Apicomplexa, the CPSF complex integrates a novel reader of the N6-methyladenosine (m6A). This feature, inherited from the plant kingdom, bridges m6A metabolism directly to 3'-end processing and by extension, to transcription termination. In this review, we will examine convergence and divergence of CPSF within the apicomplexan parasites and explore the potential of small molecule inhibition of this machinery within these organisms. This article is categorized under: RNA Processing > 3' End Processing RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Christopher Swale
- Team Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, Grenoble, France
| | - Mohamed-Ali Hakimi
- Team Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, Grenoble, France
| |
Collapse
|
10
|
Alternative Polyadenylation Is a Novel Strategy for the Regulation of Gene Expression in Response to Stresses in Plants. Int J Mol Sci 2023; 24:ijms24054727. [PMID: 36902157 PMCID: PMC10003127 DOI: 10.3390/ijms24054727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Precursor message RNA requires processing to generate mature RNA. Cleavage and polyadenylation at the 3'-end in the maturation of mRNA is one of key processing steps in eukaryotes. The polyadenylation (poly(A)) tail of mRNA is an essential feature that is required to mediate its nuclear export, stability, translation efficiency, and subcellular localization. Most genes have at least two mRNA isoforms via alternative splicing (AS) or alternative polyadenylation (APA), which increases the diversity of transcriptome and proteome. However, most previous studies have focused on the role of alternative splicing on the regulation of gene expression. In this review, we summarize the recent advances concerning APA in the regulation of gene expression and in response to stresses in plants. We also discuss the mechanisms for the regulation of APA for plants in the adaptation to stress responses, and suggest that APA is a novel strategy for the adaptation to environmental changes and response to stresses in plants.
Collapse
|
11
|
Catacalos C, Krohannon A, Somalraju S, Meyer KD, Janga SC, Chakrabarti K. Epitranscriptomics in parasitic protists: Role of RNA chemical modifications in posttranscriptional gene regulation. PLoS Pathog 2022; 18:e1010972. [PMID: 36548245 PMCID: PMC9778586 DOI: 10.1371/journal.ppat.1010972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
"Epitranscriptomics" is the new RNA code that represents an ensemble of posttranscriptional RNA chemical modifications, which can precisely coordinate gene expression and biological processes. There are several RNA base modifications, such as N6-methyladenosine (m6A), 5-methylcytosine (m5C), and pseudouridine (Ψ), etc. that play pivotal roles in fine-tuning gene expression in almost all eukaryotes and emerging evidences suggest that parasitic protists are no exception. In this review, we primarily focus on m6A, which is the most abundant epitranscriptomic mark and regulates numerous cellular processes, ranging from nuclear export, mRNA splicing, polyadenylation, stability, and translation. We highlight the universal features of spatiotemporal m6A RNA modifications in eukaryotic phylogeny, their homologs, and unique processes in 3 unicellular parasites-Plasmodium sp., Toxoplasma sp., and Trypanosoma sp. and some technological advances in this rapidly developing research area that can significantly improve our understandings of gene expression regulation in parasites.
Collapse
Affiliation(s)
- Cassandra Catacalos
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Alexander Krohannon
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, United States of America
| | - Sahiti Somalraju
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, United States of America
| | - Kate D. Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sarath Chandra Janga
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, United States of America
| | - Kausik Chakrabarti
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| |
Collapse
|
12
|
Nigro D, Blanco A, Piarulli L, Signorile MA, Colasuonno P, Blanco E, Simeone R. Fine Mapping and Candidate Gene Analysis of Pm36, a Wild Emmer-Derived Powdery Mildew Resistance Locus in Durum Wheat. Int J Mol Sci 2022; 23:ijms232113659. [PMID: 36362444 PMCID: PMC9657016 DOI: 10.3390/ijms232113659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Powdery mildew (PM) is an economically important foliar disease of cultivated cereals worldwide. The cultivation of disease-resistant varieties is considered the most efficient, sustainable and economical strategy for disease management. The objectives of the current study were to fine map the chromosomal region harboring the wild emmer PM resistance locus Pm36 and to identify candidate genes by exploiting the improved tetraploid wheat genomic resources. A set of backcross inbred lines (BILs) of durum wheat were genotyped with the SNP 25K chip array and comparison of the PM-resistant and susceptible lines defined a 1.5 cM region (physical interval of 1.08 Mb) harboring Pm36. The genetic map constructed with F2:3 progenies derived by crossing the PM resistant line 5BIL-42 and the durum parent Latino, restricted to 0.3 cM the genetic distance between Pm36 and the SNP marker IWB22904 (physical distance 0.515 Mb). The distribution of the marker interval including Pm36 in a tetraploid wheat collection indicated that the positive allele was largely present in the domesticated and wild emmer Triticum turgidum spp. dicoccum and ssp. dicoccoides. Ten high-confidence protein coding genes were identified in the Pm36 region of the emmer, durum and bread wheat reference genomes, while three added genes showed no homologous in the emmer genome. The tightly linked markers can be used for marker-assisted selection in wheat breeding programs, and as starting point for the Pm36 map-based cloning.
Collapse
Affiliation(s)
- Domenica Nigro
- Department of Soil, Plant and Food Sciences (DiSSPA), Genetics and Plant Breeding Section, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Antonio Blanco
- Department of Soil, Plant and Food Sciences (DiSSPA), Genetics and Plant Breeding Section, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
- Correspondence: ; Tel.: +39-080-5442993
| | - Luciana Piarulli
- Department of Soil, Plant and Food Sciences (DiSSPA), Genetics and Plant Breeding Section, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Massimo Antonio Signorile
- Department of Soil, Plant and Food Sciences (DiSSPA), Genetics and Plant Breeding Section, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Pasqualina Colasuonno
- Department of Soil, Plant and Food Sciences (DiSSPA), Genetics and Plant Breeding Section, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Emanuela Blanco
- Institute of Biosciences and Bioresources, National Research Council, Via Amendola 165/A, 70126 Bari, Italy
| | - Rosanna Simeone
- Department of Soil, Plant and Food Sciences (DiSSPA), Genetics and Plant Breeding Section, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
13
|
Gao Y, Liu X, Jin Y, Wu J, Li S, Li Y, Chen B, Zhang Y, Wei L, Li W, Li R, Lin C, Reddy ASN, Jaiswal P, Gu L. Drought induces epitranscriptome and proteome changes in stem-differentiating xylem of Populus trichocarpa. PLANT PHYSIOLOGY 2022; 190:459-479. [PMID: 35670753 PMCID: PMC9434199 DOI: 10.1093/plphys/kiac272] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/11/2022] [Indexed: 05/25/2023]
Abstract
Understanding gene expression and regulation requires insights into RNA transcription, processing, modification, and translation. However, the relationship between the epitranscriptome and the proteome under drought stress remains undetermined in poplar (Populus trichocarpa). In this study, we used Nanopore direct RNA sequencing and tandem mass tag-based proteomic analysis to examine epitranscriptomic and proteomic regulation induced by drought treatment in stem-differentiating xylem (SDX). Our results revealed a decreased full-length read ratio under drought treatment and, especially, a decreased association between transcriptome and proteome changes in response to drought. Epitranscriptome analysis of cellulose- and lignin-related genes revealed an increased N6-Methyladenosine (m6A) ratio, which was accompanied by decreased RNA abundance and translation, under drought stress. Interestingly, usage of the distal poly(A) site increased during drought stress. Finally, we found that transcripts of highly expressed genes tend to have shorter poly(A) tail length (PAL), and drought stress increased the percentage of transcripts with long PAL. These findings provide insights into the interplay among m6A, polyadenylation, PAL, and translation under drought stress in P. trichocarpa SDX.
Collapse
Affiliation(s)
| | | | - Yandong Jin
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ji Wu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yaxing Li
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Binqing Chen
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaxin Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Linxiao Wei
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Ruili Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chentao Lin
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California 90095, USA
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | | |
Collapse
|
14
|
Yan C, Zhang N, Wang Q, Fu Y, Zhao H, Wang J, Wu G, Wang F, Li X, Liao H. Full-length transcriptome sequencing reveals the molecular mechanism of potato seedlings responding to low-temperature. BMC PLANT BIOLOGY 2022; 22:125. [PMID: 35300606 PMCID: PMC8932150 DOI: 10.1186/s12870-022-03461-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Potato (Solanum tuberosum L.) is one of the world's most important crops, the cultivated potato is frost-sensitive, and low-temperature severely influences potato production. However, the mechanism by which potato responds to low-temperature stress is unclear. In this research, we apply a combination of second-generation sequencing and third-generation sequencing technologies to sequence full-length transcriptomes in low-temperature-sensitive cultivars to identify the important genes and main pathways related to low-temperature resistance. RESULTS In this study, we obtained 41,016 high-quality transcripts, which included 15,189 putative new transcripts. Amongst them, we identified 11,665 open reading frames, 6085 simple sequence repeats out of the potato dataset. We used public available genomic contigs to analyze the gene features, simple sequence repeat, and alternative splicing event of 24,658 non-redundant transcript sequences, predicted the coding sequence and identified the alternative polyadenylation. We performed cluster analysis, GO, and KEGG functional analysis of 4518 genes that were differentially expressed between the different low-temperature treatments. We examined 36 transcription factor families and identified 542 transcription factors in the differentially expressed genes, and 64 transcription factors were found in the AP2 transcription factor family which was the most. We measured the malondialdehyde, soluble sugar, and proline contents and the expression genes changed associated with low temperature resistance in the low-temperature treated leaves. We also tentatively speculate that StLPIN10369.5 and StCDPK16 may play a central coordinating role in the response of potatoes to low temperature stress. CONCLUSIONS Overall, this study provided the first large-scale full-length transcriptome sequencing of potato and will facilitate structure-function genetic and comparative genomics studies of this important crop.
Collapse
Affiliation(s)
- Chongchong Yan
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China.
| | - Nan Zhang
- Anhui Vocational College of City Management, Hefei, 231635, Anhui, China
| | - Qianqian Wang
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Yuying Fu
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Hongyuan Zhao
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Jiajia Wang
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Gang Wu
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Feng Wang
- Jieshou County Agricultural Technology Promotion Center, Jieshou, 236500, Anhui, China
| | - Xueyan Li
- Funan County Agricultural Technology Promotion Center, Funan, 236300, Anhui, China
| | - Huajun Liao
- Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China.
| |
Collapse
|
15
|
Han WH, Wang JX, Zhang FB, Liu YX, Wu H, Wang XW. Small RNA and Degradome Sequencing Reveal Important MicroRNA Function in Nicotiana tabacum Response to Bemisia tabaci. Genes (Basel) 2022; 13:361. [PMID: 35205405 PMCID: PMC8871844 DOI: 10.3390/genes13020361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs (miRNAs), a class of small non-coding regulatory RNAs, are key molecules in many biological and metabolic processes of plant growth, development and stress response via targeting mRNAs. The phloem-feeding insect whitefly Bemisia tabaci (Hemiptera, Aleyrodidae) is a serious pest that causes devastating harm to agricultural production worldwide. However, the function of host miRNAs in the response to whitefly infestation remains unclear. Here, we sequenced the small RNA and degradome of tobacco (Nicotiana tabacum L.), after and before infestation by B. tabaci. We identified 1291 miRNAs belonging to 138 miRNA families including 706 known miRNAs and 585 novel miRNAs. A total of 47 miRNAs were differentially expressed, of which 30 were upregulated and 17 were downregulated by whitefly exposure. Then, computational analysis showed that the target genes of differential miRNAs were involved in R gene regulation, plant innate immunity, plant pathogen defense, the plant hormone signal pathway and abiotic stress tolerance. Furthermore, degradome analysis demonstrated that 253 mRNAs were cleaved by 66 miRNAs. Among them, the targets cleaved by upregulated miR6025, miR160, miR171, miR166 and miR168 are consistent with our prediction, suggesting that pathogen-related miRNAs may function in plant defense against whitefly. Moreover, our results show that plant miRNA response and miRNA-mediated post-transcriptional regulation for phloem-feeding insect infestation are similar to pathogen invasion. Our study provides additional data to further elucidate how host plants respond and defend the phloem-feeding insects.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiao-Wei Wang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (W.-H.H.); (J.-X.W.); (F.-B.Z.); (Y.-X.L.); (H.W.)
| |
Collapse
|
16
|
Ma H, Cai L, Lin J, Zhou K, Li QQ. Divergence in the Regulation of the Salt Tolerant Response Between Arabidopsis thaliana and Its Halophytic Relative Eutrema salsugineum by mRNA Alternative Polyadenylation. FRONTIERS IN PLANT SCIENCE 2022; 13:866054. [PMID: 35401636 PMCID: PMC8993227 DOI: 10.3389/fpls.2022.866054] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/03/2022] [Indexed: 05/15/2023]
Abstract
Salt tolerance is an important mechanism by which plants can adapt to a saline environment. To understand the process of salt tolerance, we performed global analyses of mRNA alternative polyadenylation (APA), an important regulatory mechanism during eukaryotic gene expression, in Arabidopsis thaliana and its halophytic relative Eutrema salsugineum with regard to their responses to salt stress. Analyses showed that while APA occurs commonly in both Arabidopsis and Eutrema, Eutrema possesses fewer APA genes than Arabidopsis (47% vs. 54%). However, the proportion of APA genes was significantly increased in Arabidopsis under salt stress but not in Eutrema. This indicated that Arabidopsis is more sensitive to salt stress and that Eutrema exhibits an innate response to such conditions. Both species utilized distal poly(A) sites under salt stress; however, only eight genes were found to overlap when their 3' untranslated region (UTR) lengthen genes were compared, thus revealing their distinct responses to salt stress. In Arabidopsis, genes that use distal poly(A) sites were enriched in response to salt stress. However, in Eutrema, the use of poly(A) sites was less affected and fewer genes were enriched. The transcripts with upregulated poly(A) sites in Arabidopsis showed enriched pathways in plant hormone signal transduction, starch and sucrose metabolism, and fatty acid elongation; in Eutrema, biosynthetic pathways (stilbenoid, diarylheptanoid, and gingerol) and metabolic pathways (arginine and proline) showed enrichment. APA was associated with 42% and 29% of the differentially expressed genes (DE genes) in Arabidopsis and Eutrema experiencing salt stress, respectively. Salt specific poly(A) sites and salt-inducible APA events were identified in both species; notably, some salt tolerance-related genes and transcription factor genes exhibited differential APA patterns, such as CIPK21 and LEA4-5. Our results suggest that adapted species exhibit more orderly response at the RNA maturation step under salt stress, while more salt-specific poly(A) sites were activated in Arabidopsis to cope with salinity conditions. Collectively, our findings not only highlight the importance of APA in the regulation of gene expression in response to salt stress, but also provide a new perspective on how salt-sensitive and salt-tolerant species perform differently under stress conditions through transcriptome diversity.
Collapse
Affiliation(s)
- Hui Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Lingling Cai
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Juncheng Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Kaiyue Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Qingshun Q. Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
- *Correspondence: Qingshun Q. Li,
| |
Collapse
|
17
|
Wu M, Nie F, Liu H, Zhang T, Li M, Song X, Chen W. The evolution of N 6-methyladenosine regulators in plants. Methods 2021; 203:268-275. [PMID: 34883238 DOI: 10.1016/j.ymeth.2021.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/27/2022] Open
Abstract
As a reversible modification, N6-methyladenosine (m6A) plays key roles in series of biological processes. Although it has been found that m6A modification is regulated by writers, erasers and readers, their evolutionary processes are still not clearly and systematically described. In the present work, we identified 1592 m6A modification regulators from 65 representative plant species and performed the phylogenetic relationships, sequence structure, selection pressure, and codon usage analysis across species. The regulators from different species or subfamilies were distinguishable based on the phylogenetic trees. Although the gene structure was structurally and functionally conserved for each kind of regulators, the unique exon/intron structures and motif organizations were observed among different families. The selection pressure analysis demonstrated that the regulators experienced purifying selection. Interestingly, the selection pressure for the regulators in higher plants was more relaxed, indicating that they might have acquired new functions during evolution. In addition, the different codon usage preferences were observed for the different kinds of m6A modification regulators. These results will not only facilitate our understanding of the evolution of m6A regulators, but also shed light on how the evolutionary differences affect their functional divergence.
Collapse
Affiliation(s)
- Meng Wu
- School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
| | - Fulei Nie
- School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
| | - Haibin Liu
- School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
| | - Tianyang Zhang
- School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
| | - Miaomiao Li
- School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
| | - Xiaoming Song
- School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China
| | - Wei Chen
- School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611730, China.
| |
Collapse
|
18
|
Xu X, Zheng C, Lu D, Song CP, Zhang L. Phase separation in plants: New insights into cellular compartmentalization. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1835-1855. [PMID: 34314106 DOI: 10.1111/jipb.13152] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/16/2021] [Indexed: 05/16/2023]
Abstract
A fundamental challenge for cells is how to coordinate various biochemical reactions in space and time. To achieve spatiotemporal control, cells have developed organelles that are surrounded by lipid bilayer membranes. Further, membraneless compartmentalization, a process induced by dynamic physical association of biomolecules through phase transition offers another efficient mechanism for intracellular organization. While our understanding of phase separation was predominantly dependent on yeast and animal models, recent findings have provided compelling evidence for emerging roles of phase separation in plants. In this review, we first provide an overview of the current knowledge of phase separation, including its definition, biophysical principles, molecular features and regulatory mechanisms. Then we summarize plant-specific phase separation phenomena and describe their functions in plant biological processes in great detail. Moreover, we propose that phase separation is an evolutionarily conserved and efficient mechanism for cellular compartmentalization which allows for distinct metabolic processes and signaling pathways, and is especially beneficial for the sessile lifestyle of plants to quickly and efficiently respond to the changing environment.
Collapse
Affiliation(s)
- Xiumei Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Canhui Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Dandan Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
19
|
m6A RNA methylation facilitates pre-mRNA 3'-end formation and is essential for viability of Toxoplasma gondii. PLoS Pathog 2021; 17:e1009335. [PMID: 34324585 PMCID: PMC8354455 DOI: 10.1371/journal.ppat.1009335] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/10/2021] [Accepted: 07/16/2021] [Indexed: 12/19/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that can cause serious opportunistic disease in the immunocompromised or through congenital infection. To progress through its life cycle, Toxoplasma relies on multiple layers of gene regulation that includes an array of transcription and epigenetic factors. Over the last decade, the modification of mRNA has emerged as another important layer of gene regulation called epitranscriptomics. Here, we report that epitranscriptomics machinery exists in Toxoplasma, namely the methylation of adenosines (m6A) in mRNA transcripts. We identified novel components of the m6A methyltransferase complex and determined the distribution of m6A marks within the parasite transcriptome. m6A mapping revealed the modification to be preferentially located near the 3’-boundary of mRNAs. Knockdown of the m6A writer components METTL3 and WTAP resulted in diminished m6A marks and a complete arrest of parasite replication. Furthermore, we examined the two proteins in Toxoplasma that possess YTH domains, which bind m6A marks, and showed them to be integral members of the cleavage and polyadenylation machinery that catalyzes the 3’-end processing of pre-mRNAs. Loss of METTL3, WTAP, or YTH1 led to a defect in transcript 3’-end formation. Together, these findings establish that the m6A epitranscriptome is essential for parasite viability by contributing to the processing of mRNA 3’-ends. Toxoplasma gondii is a parasite of medical importance that causes disease upon immuno-suppression. Uncovering essential pathways that the parasite uses for its basic biological processes may reveal opportunities for new anti-parasitic drug therapies. Here, we describe the machinery that Toxoplasma uses to modify specific adenosine residues within its messenger RNAs (mRNA) by N6-adenosine methylation (m6A). We discovered that m6A mRNA methylation is prevalent in multiple stages of the parasite life cycle and is required for parasite replication. We also establish that m6A plays a major role in the proper maturation of mRNA. Two proteins that bind m6A modifications on mRNA associate with factors responsible for the cleavage and final processing steps of mRNA maturation. Since all of the machinery is conserved from plants to Toxoplasma and other related parasites, we propose that this system operates similarly in these organisms.
Collapse
|
20
|
Farhat DC, Bowler MW, Communie G, Pontier D, Belmudes L, Mas C, Corrao C, Couté Y, Bougdour A, Lagrange T, Hakimi MA, Swale C. A plant-like mechanism coupling m6A reading to polyadenylation safeguards transcriptome integrity and developmental gene partitioning in Toxoplasma. eLife 2021; 10:68312. [PMID: 34263725 PMCID: PMC8313237 DOI: 10.7554/elife.68312] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
Correct 3’end processing of mRNAs is one of the regulatory cornerstones of gene expression. In a parasite that must adapt to the regulatory requirements of its multi-host life style, there is a need to adopt additional means to partition the distinct transcriptional signatures of the closely and tandemly arranged stage-specific genes. In this study, we report our findings in T. gondii of an m6A-dependent 3’end polyadenylation serving as a transcriptional barrier at these loci. We identify the core polyadenylation complex within T. gondii and establish CPSF4 as a reader for m6A-modified mRNAs, via a YTH domain within its C-terminus, a feature which is shared with plants. We bring evidence of the specificity of this interaction both biochemically, and by determining the crystal structure at high resolution of the T. gondii CPSF4-YTH in complex with an m6A-modified RNA. We show that the loss of m6A, both at the level of its deposition or its recognition is associated with an increase in aberrantly elongated chimeric mRNAs emanating from impaired transcriptional termination, a phenotype previously noticed in the plant model Arabidopsis thaliana. Nanopore direct RNA sequencing shows the occurrence of transcriptional read-through breaching into downstream repressed stage-specific genes, in the absence of either CPSF4 or the m6A RNA methylase components in both T. gondii and A. thaliana. Taken together, our results shed light on an essential regulatory mechanism coupling the pathways of m6A metabolism directly to the cleavage and polyadenylation processes, one that interestingly seem to serve, in both T. gondii and A. thaliana, as a guardian against aberrant transcriptional read-throughs.
Collapse
Affiliation(s)
- Dayana C Farhat
- IAB,Team Host-Pathogen Interactions & Immunity to Infection, INSERMU1209, CNRSUMR5309, Grenoble Alpes University, Grenoble, France
| | | | | | - Dominique Pontier
- Laboratoire Génome et Développement des Plantes (LGDP), UMR5096, Centre National de la Recherche Scientifique (CNRS), Université de Perpignan via Domitia (UPVD), Perpignan, France
| | - Lucid Belmudes
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, Grenoble, France
| | - Caroline Mas
- Integrated Structural Biology Grenoble (ISBG) CNRS, CEA, Université Grenoble Alpes, EMBL, Grenoble, France
| | - Charlotte Corrao
- IAB,Team Host-Pathogen Interactions & Immunity to Infection, INSERMU1209, CNRSUMR5309, Grenoble Alpes University, Grenoble, France
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, Grenoble, France
| | - Alexandre Bougdour
- IAB,Team Host-Pathogen Interactions & Immunity to Infection, INSERMU1209, CNRSUMR5309, Grenoble Alpes University, Grenoble, France
| | - Thierry Lagrange
- Laboratoire Génome et Développement des Plantes (LGDP), UMR5096, Centre National de la Recherche Scientifique (CNRS), Université de Perpignan via Domitia (UPVD), Perpignan, France
| | - Mohamed-Ali Hakimi
- IAB,Team Host-Pathogen Interactions & Immunity to Infection, INSERMU1209, CNRSUMR5309, Grenoble Alpes University, Grenoble, France
| | - Christopher Swale
- IAB,Team Host-Pathogen Interactions & Immunity to Infection, INSERMU1209, CNRSUMR5309, Grenoble Alpes University, Grenoble, France
| |
Collapse
|
21
|
Hunt AG. CPSF30-L: A direct connection between mRNA polyadenylation and m 6A RNA modification in plants. MOLECULAR PLANT 2021; 14:711-713. [PMID: 33774216 DOI: 10.1016/j.molp.2021.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Arthur G Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, USA.
| |
Collapse
|
22
|
Song P, Yang J, Wang C, Lu Q, Shi L, Tayier S, Jia G. Arabidopsis N 6-methyladenosine reader CPSF30-L recognizes FUE signals to control polyadenylation site choice in liquid-like nuclear bodies. MOLECULAR PLANT 2021; 14:571-587. [PMID: 33515768 DOI: 10.1016/j.molp.2021.01.014] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/10/2020] [Accepted: 12/11/2020] [Indexed: 05/16/2023]
Abstract
The biological functions of the epitranscriptomic modification N6-methyladenosine (m6A) in plants are not fully understood. CPSF30-L is a predominant isoform of the polyadenylation factor CPSF30 and consists of CPSF30-S and an m6A-binding YTH domain. Little is known about the biological roles of CPSF30-L and the molecular mechanism underlying its m6A-binding function in alternative polyadenylation. Here, we characterized CPSF30-L as an Arabidopsis m6A reader whose m6A-binding function is required for the floral transition and abscisic acid (ABA) response. We found that the m6A-binding activity of CPSF30-L enhances the formation of liquid-like nuclear bodies, where CPSF30-L mainly recognizes m6A-modified far-upstream elements to control polyadenylation site choice. Deficiency of CPSF30-L lengthens the 3' untranslated region of three phenotypes-related transcripts, thereby accelerating their mRNA degradation and leading to late flowering and ABA hypersensitivity. Collectively, this study uncovers a new molecular mechanism for m6A-driven phase separation and polyadenylation in plants.
Collapse
Affiliation(s)
- Peizhe Song
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junbo Yang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chunling Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qiang Lu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Linqing Shi
- Medical Isotopes Research Center and, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Subiding Tayier
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
23
|
Hou Y, Sun J, Wu B, Gao Y, Nie H, Nie Z, Quan S, Wang Y, Cao X, Li S. CPSF30-L-mediated recognition of mRNA m 6A modification controls alternative polyadenylation of nitrate signaling-related gene transcripts in Arabidopsis. MOLECULAR PLANT 2021; 14:688-699. [PMID: 33515769 DOI: 10.1016/j.molp.2021.01.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 12/10/2020] [Accepted: 01/21/2021] [Indexed: 05/16/2023]
Abstract
N6-methyladenosine (m6A), a ubiquitous internal modification of eukaryotic mRNAs, plays a vital role in almost every aspect of mRNA metabolism. However, there is little evidence documenting the role of m6A in regulating alternative polyadenylation (APA) in plants. APA is controlled by a large protein-RNA complex with many components, including CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR30 (CPSF30). In Arabidopsis, CPSF30 has two isoforms and the longer isoform (CPSF30-L) contains a YT512-B Homology (YTH) domain, which is unique to plants. In this study, we showed that CPSF30-L YTH domain binds to m6A in vitro. In the cpsf30-2 mutant, the transcripts of many genes including several important nitrate signaling-related genes had shifts in polyadenylation sites that were correlated with m6A peaks, indicating that these gene transcripts carrying m6A tend to be regulated by APA. Wild-type CPSF30-L could rescue the defects in APA and nitrate metabolism in cpsf30-2, but m6A-binding-defective mutants of CPSF30-L could not. Taken together, our results demonstrated that m6A modification regulates APA in Arabidopsis and revealed that the m6A reader CPSF30-L affects nitrate signaling by controlling APA, shedding new light on the roles of the m6A modification during RNA 3'-end processing in nitrate metabolism.
Collapse
Affiliation(s)
- Yifeng Hou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baixing Wu
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yangyang Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Hongbo Nie
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhentian Nie
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shuxuan Quan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing 100101, China.
| | - Sisi Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
24
|
Tu M, Li Y. Profiling Alternative 3' Untranslated Regions in Sorghum using RNA-seq Data. Front Genet 2020; 11:556749. [PMID: 33193635 PMCID: PMC7649775 DOI: 10.3389/fgene.2020.556749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022] Open
Abstract
Sorghum is an important crop widely used for food, feed, and fuel. Transcriptome-wide studies of 3′ untranslated regions (3′UTR) using regular RNA-seq remain scarce in sorghum, while transcriptomes have been characterized extensively using Illumina short-read sequencing platforms for many sorghum varieties under various conditions or developmental contexts. 3′UTR is a critical regulatory component of genes, controlling the translation, transport, and stability of messenger RNAs. In the present study, we profiled the alternative 3′UTRs at the transcriptome level in three genetically related but phenotypically contrasting lines of sorghum: Rio, BTx406, and R9188. A total of 1,197 transcripts with alternative 3′UTRs were detected using RNA-seq data. Their categorization identified 612 high-confidence alternative 3′UTRs. Importantly, the high-confidence alternative 3′UTR genes significantly overlapped with the genesets that are associated with RNA N6-methyladenosine (m6A) modification, suggesting a clear indication between alternative 3′UTR and m6A methylation in sorghum. Moreover, taking advantage of sorghum genetics, we provided evidence of genotype specificity of alternative 3′UTR usage. In summary, our work exemplifies a transcriptome-wide profiling of alternative 3′UTRs using regular RNA-seq data in non-model crops and gains insights into alternative 3′UTRs and their genotype specificity.
Collapse
Affiliation(s)
- Min Tu
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Yin Li
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| |
Collapse
|
25
|
Aceituno-Valenzuela U, Micol-Ponce R, Ponce MR. Genome-wide analysis of CCHC-type zinc finger (ZCCHC) proteins in yeast, Arabidopsis, and humans. Cell Mol Life Sci 2020; 77:3991-4014. [PMID: 32303790 PMCID: PMC11105112 DOI: 10.1007/s00018-020-03518-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/06/2020] [Accepted: 03/30/2020] [Indexed: 12/22/2022]
Abstract
The diverse eukaryotic proteins that contain zinc fingers participate in many aspects of nucleic acid metabolism, from DNA transcription to RNA degradation, post-transcriptional gene silencing, and small RNA biogenesis. These proteins can be classified into at least 30 types based on structure. In this review, we focus on the CCHC-type zinc fingers (ZCCHC), which contain an 18-residue domain with the CX2CX4HX4C sequence, where C is cysteine, H is histidine, and X is any amino acid. This motif, also named the "zinc knuckle", is characteristic of the retroviral Group Antigen protein and occurs alone or with other motifs. Many proteins containing zinc knuckles have been identified in eukaryotes, but only a few have been studied. Here, we review the available information on ZCCHC-containing factors from three evolutionarily distant eukaryotes-Saccharomyces cerevisiae, Arabidopsis thaliana, and Homo sapiens-representing fungi, plants, and metazoans, respectively. We performed systematic searches for proteins containing the CX2CX4HX4C sequence in organism-specific and generalist databases. Next, we analyzed the structural and functional information for all such proteins stored in UniProtKB. Excluding retrotransposon-encoded proteins and proteins harboring uncertain ZCCHC motifs, we found seven ZCCHC-containing proteins in yeast, 69 in Arabidopsis, and 34 in humans. ZCCHC-containing proteins mainly localize to the nucleus, but some are nuclear and cytoplasmic, or exclusively cytoplasmic, and one localizes to the chloroplast. Most of these factors participate in RNA metabolism, including transcriptional elongation, polyadenylation, translation, pre-messenger RNA splicing, RNA export, RNA degradation, microRNA and ribosomal RNA biogenesis, and post-transcriptional gene silencing. Several human ZCCHC-containing factors are derived from neofunctionalized retrotransposons and act as proto-oncogenes in diverse neoplastic processes. The conservation of ZCCHCs in orthologs of these three phylogenetically distant eukaryotes suggests that these domains have biologically relevant functions that are not well known at present.
Collapse
Affiliation(s)
- Uri Aceituno-Valenzuela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| | - Rosa Micol-Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain.
| |
Collapse
|
26
|
Reichel M, Köster T, Staiger D. Marking RNA: m6A writers, readers, and functions in Arabidopsis. J Mol Cell Biol 2020; 11:899-910. [PMID: 31336387 PMCID: PMC6884701 DOI: 10.1093/jmcb/mjz085] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/24/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
N6-methyladenosine (m6A) emerges as an important modification in eukaryotic mRNAs. m6A has first been reported in 1974, and its functional significance in mammalian gene regulation and importance for proper development have been well established. An arsenal of writer, eraser, and reader proteins accomplish deposition, removal, and interpretation of the m6A mark, resulting in dynamic function. This led to the concept of an epitranscriptome, the compendium of RNA species with chemical modification of the nucleobases in the cell, in analogy to the epigenome. While m6A has long been known to also exist in plant mRNAs, proteins involved in m6A metabolism have only recently been detected by mutant analysis, homology search, and mRNA interactome capture in the reference plant Arabidopsis thaliana. Dysregulation of the m6A modification causes severe developmental abnormalities of leaves and roots and altered timing of reproductive development. Furthermore, m6A modification affects viral infection. Here, we discuss recent progress in identifying m6A sites transcriptome-wide, in identifying the molecular players involved in writing, removing, and reading the mark, and in assigning functions to this RNA modification in A. thaliana. We highlight similarities and differences to m6A modification in mammals and provide an outlook on important questions that remain to be addressed.
Collapse
Affiliation(s)
- Marlene Reichel
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Tino Köster
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
27
|
Pritts JD, Hursey MS, Michalek JL, Batelu S, Stemmler TL, Michel SLJ. Unraveling the RNA Binding Properties of the Iron-Sulfur Zinc Finger Protein CPSF30. Biochemistry 2020; 59:970-982. [PMID: 32027124 DOI: 10.1021/acs.biochem.9b01065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cleavage and polyadenylation specificity factor 30 (CPSF30) is a "zinc finger" protein that plays a crucial role in the transition of pre-mRNA to RNA. CPSF30 contains five conserved CCCH domains and a CCHC "zinc knuckle" domain. CPSF30 activity is critical for pre-mRNA processing. A truncated form of the protein, in which only the CCCH domains are present, has been shown to specifically bind AU-rich pre-mRNA targets; however, the RNA binding and recognition properties of full-length CPSF30 are not known. Herein, we report the isolation and biochemical characterization of full-length CPSF30. We report that CPSF30 contains one 2Fe-2S cluster in addition to five zinc ions, as measured by inductively coupled plasma mass spectrometry, ultraviolet-visible spectroscopy, and X-ray absorption spectroscopy. Utilizing fluorescence anisotropy RNA binding assays, we show that full-length CPSF30 has high binding affinity for two types of pre-mRNA targets, AAUAAA and polyU, both of which are conserved sequence motifs present in the majority of pre-mRNAs. Binding to the AAUAAA motif requires that the five CCCH domains of CPSF30 be present, whereas binding to polyU sequences requires the entire, full-length CPSF30. These findings implicate the CCHC "zinc knuckle" present in the full-length protein as being critical for mediating polyU binding. We also report that truncated forms of the protein, containing either just two CCCH domains (ZF2 and ZF3) or the CCHC "zinc knuckle" domain, do not exhibit any RNA binding, indicating that CPSF30/RNA binding requires several ZF (and/or Fe-S cluster) domains working in concert to mediate RNA recognition.
Collapse
Affiliation(s)
- Jordan D Pritts
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States
| | - Matthew S Hursey
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States
| | - Jamie L Michalek
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States
| | - Sharon Batelu
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48201, United States
| | - Timothy L Stemmler
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48201, United States
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States
| |
Collapse
|
28
|
Conesa CM, Saez A, Navarro-Neila S, de Lorenzo L, Hunt AG, Sepúlveda EB, Baigorri R, Garcia-Mina JM, Zamarreño AM, Sacristán S, del Pozo JC. Alternative Polyadenylation and Salicylic Acid Modulate Root Responses to Low Nitrogen Availability. PLANTS (BASEL, SWITZERLAND) 2020; 9:E251. [PMID: 32079121 PMCID: PMC7076428 DOI: 10.3390/plants9020251] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023]
Abstract
Nitrogen (N) is probably the most important macronutrient and its scarcity limits plant growth, development and fitness. N starvation response has been largely studied by transcriptomic analyses, but little is known about the role of alternative polyadenylation (APA) in such response. In this work, we show that N starvation modifies poly(A) usage in a large number of transcripts, some of them mediated by FIP1, a component of the polyadenylation machinery. Interestingly, the number of mRNAs isoforms with poly(A) tags located in protein-coding regions or 5'-UTRs significantly increases in response to N starvation. The set of genes affected by APA in response to N deficiency is enriched in N-metabolism, oxidation-reduction processes, response to stresses, and hormone responses, among others. A hormone profile analysis shows that the levels of salicylic acid (SA), a phytohormone that reduces nitrate accumulation and root growth, increase significantly upon N starvation. Meta-analyses of APA-affected and fip1-2-deregulated genes indicate a connection between the nitrogen starvation response and salicylic acid (SA) signaling. Genetic analyses show that SA may be important for preventing the overgrowth of the root system in low N environments. This work provides new insights on how plants interconnect different pathways, such as defense-related hormonal signaling and the regulation of genomic information by APA, to fine-tune the response to low N availability.
Collapse
Affiliation(s)
- Carlos M. Conesa
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (C.M.C.); (S.N.-N.)
- Centro de Biotecnología y Genómica de Plantas (CBGP) and Escuela Técnica Superior de Ingeniería Agronómica, Agroambiental y de Biosistemas (ETSIAAB), Universidad Polictécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Angela Saez
- DTD Development and Technical Department, Timac Agro Spain, 31580 Lodosa, Navarra, Spain; (A.S.); (R.B.)
| | - Sara Navarro-Neila
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (C.M.C.); (S.N.-N.)
| | - Laura de Lorenzo
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, USA; (L.d.L.); (A.G.H.)
| | - Arthur G. Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, USA; (L.d.L.); (A.G.H.)
| | - Edgar B. Sepúlveda
- Departamento de Biotecnología y Bioingeniería CINVESTAV Instituto Politécnico Nacional, 07360 Ciudad de Mexico, Mexico;
| | - Roberto Baigorri
- DTD Development and Technical Department, Timac Agro Spain, 31580 Lodosa, Navarra, Spain; (A.S.); (R.B.)
| | - Jose M. Garcia-Mina
- Environmental Biology Department, University of Navarra, 31008 Navarra, Spain; (J.M.G.-M.); (A.M.Z.)
| | - Angel M. Zamarreño
- Environmental Biology Department, University of Navarra, 31008 Navarra, Spain; (J.M.G.-M.); (A.M.Z.)
| | - Soledad Sacristán
- Centro de Biotecnología y Genómica de Plantas (CBGP) and Escuela Técnica Superior de Ingeniería Agronómica, Agroambiental y de Biosistemas (ETSIAAB), Universidad Polictécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Juan C. del Pozo
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (C.M.C.); (S.N.-N.)
| |
Collapse
|
29
|
Bernardes WS, Menossi M. Plant 3' Regulatory Regions From mRNA-Encoding Genes and Their Uses to Modulate Expression. FRONTIERS IN PLANT SCIENCE 2020; 11:1252. [PMID: 32922424 PMCID: PMC7457121 DOI: 10.3389/fpls.2020.01252] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/29/2020] [Indexed: 05/08/2023]
Abstract
Molecular biotechnology has made it possible to explore the potential of plants for different purposes. The 3' regulatory regions have a great diversity of cis-regulatory elements directly involved in polyadenylation, stability, transport and mRNA translation, essential to achieve the desired levels of gene expression. A complex interaction between the cleavage and polyadenylation molecular complex and cis-elements determine the polyadenylation site, which may result in the choice of non-canonical sites, resulting in alternative polyadenylation events, involved in the regulation of more than 80% of the genes expressed in plants. In addition, after transcription, a wide array of RNA-binding proteins interacts with cis-acting elements located mainly in the 3' untranslated region, determining the fate of mRNAs in eukaryotic cells. Although a small number of 3' regulatory regions have been identified and validated so far, many studies have shown that plant 3' regulatory regions have a higher potential to regulate gene expression in plants compared to widely used 3' regulatory regions, such as NOS and OCS from Agrobacterium tumefaciens and 35S from cauliflower mosaic virus. In this review, we discuss the role of 3' regulatory regions in gene expression, and the superior potential that plant 3' regulatory regions have compared to NOS, OCS and 35S 3' regulatory regions.
Collapse
|
30
|
Yu Z, Lin J, Li QQ. Transcriptome Analyses of FY Mutants Reveal Its Role in mRNA Alternative Polyadenylation. THE PLANT CELL 2019; 31:2332-2352. [PMID: 31427469 PMCID: PMC6790095 DOI: 10.1105/tpc.18.00545] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/15/2019] [Accepted: 08/19/2019] [Indexed: 05/10/2023]
Abstract
A crucial step for mRNA polyadenylation is poly(A) signal recognition by trans-acting factors. The mammalian cleavage and polyadenylation specificity factor (CPSF) complex components CPSF30 and WD repeat-containing protein33 (WDR33) recognize the canonical AAUAAA for polyadenylation. In Arabidopsis (Arabidopsis thaliana), the flowering time regulator FY is the homolog of WDR33. However, its role in mRNA polyadenylation is poorly understood. Using poly(A) tag sequencing, we found that >50% of alternative polyadenylation (APA) events are altered in fy single mutants or double mutants with oxt6 (a null mutant of AtCPSF30), but mutation of the FY WD40-repeat has a stronger effect than deletion of the plant-unique Pro-Pro-Leu-Pro-Pro (PPLPP) domain. fy mutations disrupt AAUAAA or AAUAAA-like poly(A) signal recognition. Notably, A-rich signal usage is suppressed in the WD40-repeat mutation but promoted in PPLPP-domain deficiency. However, fy mutations do not aggravate the altered signal usage in oxt6 Furthermore, the WD40-repeat mutation shows a preference for 3' untranslated region shortening, but the PPLPP-domain deficiency shows a preference for lengthening. Interestingly, the WD40-repeat mutant exhibits shortened primary roots and late flowering with alteration of APA of related genes. Importantly, the long transcripts of two APA genes affected in fy are related to abiotic stress responses. These results reveal a conserved and specific role of FY in mRNA polyadenylation.
Collapse
Affiliation(s)
- Zhibo Yu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China 361102
| | - Juncheng Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China 361102
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California 91766
| | - Qingshun Quinn Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China 361102
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California 91766
| |
Collapse
|
31
|
Guo T, Wang N, Xue Y, Guan Q, van Nocker S, Liu C, Ma F. Overexpression of the RNA binding protein MhYTP1 in transgenic apple enhances drought tolerance and WUE by improving ABA level under drought condition. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:397-407. [PMID: 30824018 DOI: 10.1016/j.plantsci.2018.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/05/2018] [Accepted: 11/26/2018] [Indexed: 05/08/2023]
Abstract
MhYTP1 is involved in post-transcriptional regulation as a member of YT521-homology (YTH) domain-containing RNA-binding proteins. We previously cloned MhYTP1 and found it participated in various biotic and abiotic stress responses. However, its function in long-term moderate drought has not been verified. Thus, we explored its biological role in response to drought. Under drought condition, the net photosynthesis rate (Pn) and water use efficiency (WUE) were significantly elevated in MhYTP1-overexpressing (OE) apple plants when compared with the non-transgenic (NT) controls. Further analysis indicated MhYTP1 expression was associated with elevated ABA content, increased stomatal density and reduced stomatal aperture. In addition, to gain insight into the function of stem-specific expression of MhYTP1, grafting experiments were performed. Interestingly, lower transpiration rate (Tr) and higher WUE were observed when transgenic plants were used as scions as opposed to rootstocks and when transgenic rather than NT plants were used as rootstocks, indicating MhYTP1 plays crucial roles in grafted plants. These results define a function for MhYTP1 in promoting tolerance to drought conditions, and suggest that MhYTP1 can serve as a candidate gene for future apple drought resistance breeding with the help of biotechnology.
Collapse
Affiliation(s)
- Tianli Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Na Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yangchun Xue
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Steven van Nocker
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
32
|
Zeng W, Dai X, Sun J, Hou Y, Ma X, Cao X, Zhao Y, Cheng Y. Modulation of Auxin Signaling and Development by Polyadenylation Machinery. PLANT PHYSIOLOGY 2019; 179:686-699. [PMID: 30487141 PMCID: PMC6426405 DOI: 10.1104/pp.18.00782] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/18/2018] [Indexed: 05/25/2023]
Abstract
Polyadenylation influences gene expression by affecting mRNA stability, transport, and translatability. Here, we report that Cleavage stimulation Factor 77 (AtCstF77), a component of the pre-mRNA 3'-end polyadenylation machinery, affects polyadenylation site (PAS) selection in transcripts of some auxin signaling genes in Arabidopsis (Arabidopsis thaliana). Disruption of AtCstF77 reduced auxin sensitivity and decreased the expression of the auxin reporter DR5-GFP Null mutations of cstf77 caused severe developmental defects, but were not lethal as previously reported. cstf77-2 genetically interacted with transport inhibitor response 1 auxin signaling f-box 2 auxin receptor double mutants, further supporting that polyadenylation affects auxin signaling. AtCstF77 was ubiquitously expressed in embryos, seedlings, and adult plants. The AtCstF77 protein was localized in the nucleus, which is consistent with its function in pre-mRNA processing. We observed that PASs in transcripts from approximately 2,400 genes were shifted in the cstf77-2 mutant. Moreover, most of the PAS shifts were from proximal to distal sites. Auxin treatment also caused PAS shifts in transcripts from a small number of genes. Several auxin signaling or homeostasis genes had different PASs in their transcripts in the cstf77-2 mutant. The expression levels of AUXIN RESISTANT 2/INDOLE-3-ACETIC ACID 7 were significantly increased in the cstf77-2 mutant, which can partially account for the auxin resistance phenotype of this mutant. Our results demonstrate that AtCstF77 plays pleiotropic and critical roles in Arabidopsis development. Moreover, disruption of AtCstF64, another component of the polyadenylation machinery, led to developmental defects and reduced auxin response, similar to those of the cstf77-2 mutant. We conclude that AtCstF77 affects auxin responses, likely by controlling PAS selection of transcripts of some auxin signaling components.
Collapse
Affiliation(s)
- Wei Zeng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinhua Dai
- Section of Cell and Developmental Biology, University of California, San Diego, California 92093-0116
| | - Jing Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yifeng Hou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuan Ma
- College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Xiaofeng Cao
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California, San Diego, California 92093-0116
| | - Youfa Cheng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Zhou Y, Hu L, Jiang L, Liu S. Genome-wide identification and expression analysis of YTH domain-containing RNA-binding protein family in cucumber (Cucumis sativus). Genes Genomics 2018; 40:579-589. [PMID: 29892943 DOI: 10.1007/s13258-018-0659-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/16/2018] [Indexed: 10/18/2022]
Abstract
YTH domain-containing RNA-binding proteins are involved in post-transcriptional regulation and play important roles in the growth and development as well as abiotic stress responses of plants. However, YTH genes have not been previously studied in cucumber (Cucumis sativus). In this study, a total of five YTH genes (CsYTH1-CsYTH5) were identified in cucumber, which could be mapped on three out of the seven cucumber chromosomes. All CsYTH proteins had highly conserved C-terminal YTH domains, and two of them (CsYTH1 and CsYTH4) harbored extra CCCH and P/Q/N-rich domains. The phylogenesis, conserved motifs and exon-intron structure of YTH genes from cucumber, Arabidopsis and rice were also analyzed. The phylogenetically closely clustered YTHs shared similar gene structures and conserved motifs. An analysis of the cis-acting regulatory elements in the upstream region of these genes resulted in the identification of many cis-elements related to stress, hormone and development. Expression analysis based on the transcriptome data showed that some CsYTHs had development- or tissue-specific expression. In addition, their expression levels were altered under various stresses such as salt, drought, cold, and abscisic acid (ABA) treatments. These findings lay the foundation for the functional analysis of CsYTHs in the future.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Biochemistry and Molecular Biology, College of Science, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Lifang Hu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Lunwei Jiang
- Department of Biochemistry and Molecular Biology, College of Science, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Shiqiang Liu
- Department of Biochemistry and Molecular Biology, College of Science, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| |
Collapse
|
34
|
Hong L, Ye C, Lin J, Fu H, Wu X, Li QQ. Alternative polyadenylation is involved in auxin-based plant growth and development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:246-258. [PMID: 29155478 DOI: 10.1111/tpj.13771] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 10/24/2017] [Accepted: 10/31/2017] [Indexed: 05/24/2023]
Abstract
Auxin is widely involved in plant growth and development. However, the molecular mechanism on how auxin carries out this work is unclear. In particular, the effect of auxin on pre-mRNA post-transcriptional regulation is mostly unknown. By using a poly(A) tag (PAT) sequencing approach, mRNA alternative polyadenylation (APA) profiles after auxin treatment were revealed. We showed that hundreds of poly(A) site clusters (PACs) are affected by auxin at the transcriptome level, where auxin reduces PAC distribution in 5'-untranslated region (UTR), but increases in the 3'UTR. APA site usage frequencies of 42 genes were switched by auxin, suggesting that auxin affects the choice of poly(A) sites. Furthermore, poly(A) signal selection was altered after auxin treatment. For example, a mutant of poly(A) signal binding protein CPSF30 showed altered sensitivity to auxin treatment, indicating interactions between auxin and the poly(A) signal recognition machinery. We also found that auxin activity on lateral root development is likely mediated by altered expression of ARF7, ARF19 and IAA14 through poly(A) site switches. Our results shed light on the molecular mechanisms of auxin responses relative to its interactions with mRNA polyadenylation.
Collapse
Affiliation(s)
- Liwei Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Congting Ye
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Juncheng Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Haihui Fu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiaohui Wu
- Department of Automation, Xiamen University, Xiamen, Fujian, 361005, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA
| |
Collapse
|
35
|
Li Z, Wang R, Gao Y, Wang C, Zhao L, Xu N, Chen KE, Qi S, Zhang M, Tsay YF, Crawford NM, Wang Y. The Arabidopsis CPSF30-L gene plays an essential role in nitrate signaling and regulates the nitrate transceptor gene NRT1.1. THE NEW PHYTOLOGIST 2017; 216:1205-1222. [PMID: 28850721 DOI: 10.1111/nph.14743] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/04/2017] [Indexed: 05/20/2023]
Abstract
Plants have evolved sophisticated mechanisms to adapt to fluctuating environmental nitrogen availability. However, more underlying genes regulating the response to nitrate have yet to be characterized. We report here the identification of a nitrate regulatory mutant whose mutation mapped to the Cleavage and Polyadenylation Specificity Factor 30 gene (CPSF30-L). In the mutant, induction of nitrate-responsive genes was inhibited independent of the ammonium conditions and was restored by expression of the wild-type 65 kDa encoded by CPSF30-L. Molecular and genetic evidence suggests that CPSF30-L works upstream of NRT1.1 and independently of NLP7 in response to nitrate. Analysis of the 3'-UTR of NRT1.1 showed that the pattern of polyadenylation sites was altered in the cpsf30 mutant. Transcriptome analysis revealed that four nitrogen-related clusters were enriched in the differentially expressed genes of the cpsf30 mutant. Nitrate uptake was decreased in the mutant along with reduced expression of the nitrate transporter/sensor gene NRT1.1, while nitrate reduction and amino acid content were enhanced in roots along with increased expression of several nitrate assimilatory genes. These findings indicate that the 65 kDa protein encoded by CPSF30-L mediates nitrate signaling in part by regulating NRT1.1 expression, thus adding an important component to the nitrate signaling network.
Collapse
Affiliation(s)
- Zehui Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Rongchen Wang
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yangyang Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Chao Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Lufei Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Na Xu
- School of Biological Science, Jining Medical University, Rizhao, Shandong, 276826, China
| | - Kuo-En Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shengdong Qi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Min Zhang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yi-Fang Tsay
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Nigel M Crawford
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, 92093-0116, USA
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| |
Collapse
|
36
|
Szkop KJ, Cooke PIC, Humphries JA, Kalna V, Moss DS, Schuster EF, Nobeli I. Dysregulation of Alternative Poly-adenylation as a Potential Player in Autism Spectrum Disorder. Front Mol Neurosci 2017; 10:279. [PMID: 28955198 PMCID: PMC5601403 DOI: 10.3389/fnmol.2017.00279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/17/2017] [Indexed: 11/30/2022] Open
Abstract
We present here the hypothesis that alternative poly-adenylation (APA) is dysregulated in the brains of individuals affected by Autism Spectrum Disorder (ASD), due to disruptions in the calcium signaling networks. APA, the process of selecting different poly-adenylation sites on the same gene, yielding transcripts with different-length 3′ untranslated regions (UTRs), has been documented in different tissues, stages of development and pathologic conditions. Differential use of poly-adenylation sites has been shown to regulate the function, stability, localization and translation efficiency of target RNAs. However, the role of APA remains rather unexplored in neurodevelopmental conditions. In the human brain, where transcripts have the longest 3′ UTRs and are thus likely to be under more complex post-transcriptional regulation, erratic APA could be particularly detrimental. In the context of ASD, a condition that affects individuals in markedly different ways and whose symptoms exhibit a spectrum of severity, APA dysregulation could be amplified or dampened depending on the individual and the extent of the effect on specific genes would likely vary with genetic and environmental factors. If this hypothesis is correct, dysregulated APA events might be responsible for certain aspects of the phenotypes associated with ASD. Evidence supporting our hypothesis is derived from standard RNA-seq transcriptomic data but we suggest that future experiments should focus on techniques that probe the actual poly-adenylation site (3′ sequencing). To address issues arising from the use of post-mortem tissue and low numbers of heterogeneous samples affected by confounding factors (such as the age, gender and health of the individuals), carefully controlled in vitro systems will be required to model the effect of calcium signaling dysregulation in the ASD brain.
Collapse
Affiliation(s)
- Krzysztof J Szkop
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of LondonLondon, United Kingdom
| | - Peter I C Cooke
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of LondonLondon, United Kingdom
| | - Joanne A Humphries
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of LondonLondon, United Kingdom
| | - Viktoria Kalna
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of LondonLondon, United Kingdom
| | - David S Moss
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of LondonLondon, United Kingdom
| | | | - Irene Nobeli
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of LondonLondon, United Kingdom
| |
Collapse
|
37
|
Wang N, Guo T, Wang P, Sun X, Shao Y, Jia X, Liang B, Gong X, Ma F. MhYTP1 and MhYTP2 from Apple Confer Tolerance to Multiple Abiotic Stresses in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2017; 8:1367. [PMID: 28824695 PMCID: PMC5543281 DOI: 10.3389/fpls.2017.01367] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/21/2017] [Indexed: 05/24/2023]
Abstract
The first YTH domain-containing RNA binding protein (YTP) was found in rat, where it was related to oxidative stress. Unlike characterizations in yeast and animals, functions of plant YTPs are less clear. Malus hupehensis (Pamp.) Rehd. YTP1 and YTP2 (MhYTP1 and MhYTP2) are known to be active in leaf senescence and fruit ripening. However, no research has been published about their roles in stress responses. Here, we investigate the stress-related functions of MhYTP1 and MhYTP2 in Arabidopsis thaliana. Both of the two genes participated in salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA) signaling and play roles in plant responses to oxidative stress, chilling, high temperature, high salinity, and mannitol induced physiological drought stress. Moreover, MhYTP1 plays leading roles in SA and ABA signaling, and MhYTP2 plays leading roles in JA signaling and oxidative stress responses. These results will fill a gap in our knowledge about plant YTPs and stress responses and provide a foundation for future attempts to improve stress tolerance in apple.
Collapse
|
38
|
Wang N, Guo T, Sun X, Jia X, Wang P, Shao Y, Liang B, Gong X, Ma F. Functions of two Malus hupehensis (Pamp.) Rehd. YTPs (MhYTP1 and MhYTP2) in biotic- and abiotic-stress responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 261:18-27. [PMID: 28554690 DOI: 10.1016/j.plantsci.2017.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 05/02/2017] [Accepted: 05/05/2017] [Indexed: 06/07/2023]
Abstract
RNA binding proteins play important roles in plant responses to biotic and abiotic stresses. The YT521-B homology (YTH) domain-containing RNA binding protein (YTP) was first found in Rattus norvegicus and is related to oxygen-deficient stress. The Malus YTP gene family has 15 members. Results from their functional analysis will help researchers improve stress tolerance and fruit quality in apple. We cloned two homologous YTP family members in M. hupehensis - MhYTP1 and MhYTP2 - and identified their promoter regions that contain many cis-elements related to biotic and abiotic stresses. Both MhYTP1 and MhYTP2 can be induced by various treatments, e.g., methyl jasmonate (MeJA), salicylic acid (SA), abscisic acid (ABA), water-logging, water deficits, and high salinity. When compared with the wild type (WT), transgenic plants of 'GL-3' ('Royal Gala') apple that over-express MhYTP1 or MhYTP2 are more sensitive to D. mali infection, heat stress, and high salinity, more resistant to water-logging, chilling, drought and nutrition deficient conditions. All of these findings indicate that MhYTP1 and MhYTP2 participate in various biotic- and abiotic-stress responses.
Collapse
Affiliation(s)
- Na Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianli Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xun Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ping Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yun Shao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bowen Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
39
|
Lacerda R, Menezes J, Romão L. More than just scanning: the importance of cap-independent mRNA translation initiation for cellular stress response and cancer. Cell Mol Life Sci 2017; 74:1659-1680. [PMID: 27913822 PMCID: PMC11107732 DOI: 10.1007/s00018-016-2428-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 12/11/2022]
Abstract
The scanning model for eukaryotic mRNA translation initiation states that the small ribosomal subunit, along with initiation factors, binds at the cap structure at the 5' end of the mRNA and scans the 5' untranslated region (5'UTR) until an initiation codon is found. However, under conditions that impair canonical cap-dependent translation, the synthesis of some proteins is kept by alternative mechanisms that are required for cell survival and stress recovery. Alternative modes of translation initiation include cap- and/or scanning-independent mechanisms of ribosomal recruitment. In most cap-independent translation initiation events there is a direct recruitment of the 40S ribosome into a position upstream, or directly at, the initiation codon via a specific internal ribosome entry site (IRES) element in the 5'UTR. Yet, in some cellular mRNAs, a different translation initiation mechanism that is neither cap- nor IRES-dependent seems to occur through a special RNA structure called cap-independent translational enhancer (CITE). Recent evidence uncovered a distinct mechanism through which mRNAs containing N 6-methyladenosine (m6A) residues in their 5'UTR directly bind eukaryotic initiation factor 3 (eIF3) and the 40S ribosomal subunit in order to initiate translation in the absence of the cap-binding proteins. This review focuses on the important role of cap-independent translation mechanisms in human cells and how these alternative mechanisms can either act individually or cooperate with other cis-acting RNA regulons to orchestrate specific translational responses triggered upon several cellular stress states, and diseases such as cancer. Elucidation of these non-canonical mechanisms reveals the complexity of translational control and points out their potential as prospective novel therapeutic targets.
Collapse
Affiliation(s)
- Rafaela Lacerda
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Juliane Menezes
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Luísa Romão
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal.
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
40
|
Reichel M, Liao Y, Rettel M, Ragan C, Evers M, Alleaume AM, Horos R, Hentze MW, Preiss T, Millar AA. In Planta Determination of the mRNA-Binding Proteome of Arabidopsis Etiolated Seedlings. THE PLANT CELL 2016; 28:2435-2452. [PMID: 27729395 PMCID: PMC5134986 DOI: 10.1105/tpc.16.00562] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/15/2016] [Accepted: 10/11/2016] [Indexed: 05/17/2023]
Abstract
RNA binding proteins (RBPs) control the fate and expression of a transcriptome. Despite this fundamental importance, our understanding of plant RBPs is rudimentary, being mainly derived via bioinformatic extrapolation from other kingdoms. Here, we adapted the mRNA-protein interactome capture method to investigate the RNA binding proteome in planta. From Arabidopsis thaliana etiolated seedlings, we captured more than 700 proteins, including 300 with high confidence that we have defined as the At-RBP set. Approximately 75% of these At-RBPs are bioinformatically linked with RNA biology, containing a diversity of canonical RNA binding domains (RBDs). As no prior experimental RNA binding evidence exists for the majority of these proteins, their capture now authenticates them as RBPs. Moreover, we identified protein families harboring emerging and potentially novel RBDs, including WHIRLY, LIM, ALBA, DUF1296, and YTH domain-containing proteins, the latter being homologous to animal RNA methylation readers. Other At-RBP set proteins include major signaling proteins, cytoskeleton-associated proteins, membrane transporters, and enzymes, suggesting the scope and function of RNA-protein interactions within a plant cell is much broader than previously appreciated. Therefore, our foundation data set has provided an unbiased insight into the RNA binding proteome of plants, on which future investigations into plant RBPs can be based.
Collapse
Affiliation(s)
- Marlene Reichel
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
| | - Yalin Liao
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| | - Mandy Rettel
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Chikako Ragan
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| | - Maurits Evers
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| | | | - Rastislav Horos
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | - Thomas Preiss
- EMBL-Australia Collaborating Group, Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst (Sydney), New South Wales 2010, Australia
| | - Anthony A Millar
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
41
|
Burgess A, David R, Searle IR. Deciphering the epitranscriptome: A green perspective. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:822-835. [PMID: 27172004 PMCID: PMC5094531 DOI: 10.1111/jipb.12483] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/10/2016] [Indexed: 05/13/2023]
Abstract
The advent of high-throughput sequencing technologies coupled with new detection methods of RNA modifications has enabled investigation of a new layer of gene regulation - the epitranscriptome. With over 100 known RNA modifications, understanding the repertoire of RNA modifications is a huge undertaking. This review summarizes what is known about RNA modifications with an emphasis on discoveries in plants. RNA ribose modifications, base methylations and pseudouridylation are required for normal development in Arabidopsis, as mutations in the enzymes modifying them have diverse effects on plant development and stress responses. These modifications can regulate RNA structure, turnover and translation. Transfer RNA and ribosomal RNA modifications have been mapped extensively and their functions investigated in many organisms, including plants. Recent work exploring the locations, functions and targeting of N6 -methyladenosine (m6 A), 5-methylcytosine (m5 C), pseudouridine (Ψ), and additional modifications in mRNAs and ncRNAs are highlighted, as well as those previously known on tRNAs and rRNAs. Many questions remain as to the exact mechanisms of targeting and functions of specific modified sites and whether these modifications have distinct functions in the different classes of RNAs.
Collapse
Affiliation(s)
- Alice Burgess
- School of Biological Sciences, The University of Adelaide, South Australia,, 5005, Australia
- School of Agriculture, Food and Wine, The Waite Research Institute, The University of Adelaide, South Australia,, 5005, Australia
| | - Rakesh David
- School of Biological Sciences, The University of Adelaide, South Australia,, 5005, Australia
- School of Agriculture, Food and Wine, The Waite Research Institute, The University of Adelaide, South Australia,, 5005, Australia
| | - Iain Robert Searle
- School of Biological Sciences, The University of Adelaide, South Australia,, 5005, Australia.
- School of Agriculture, Food and Wine, The Waite Research Institute, The University of Adelaide, South Australia,, 5005, Australia.
- The University of Adelaide and Shanghai Jiao Tong University Joint International Centre for Agriculture and Health, Joint International Research Laboratory of Metabolic & Developmental Sciences, Adelaide, Australia.
| |
Collapse
|
42
|
Cleavage and polyadenylation specificity factor 30: An RNA-binding zinc-finger protein with an unexpected 2Fe-2S cluster. Proc Natl Acad Sci U S A 2016; 113:4700-5. [PMID: 27071088 DOI: 10.1073/pnas.1517620113] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cleavage and polyadenylation specificity factor 30 (CPSF30) is a key protein involved in pre-mRNA processing. CPSF30 contains five Cys3His domains (annotated as "zinc-finger" domains). Using inductively coupled plasma mass spectrometry, X-ray absorption spectroscopy, and UV-visible spectroscopy, we report that CPSF30 is isolated with iron, in addition to zinc. Iron is present in CPSF30 as a 2Fe-2S cluster and uses one of the Cys3His domains; 2Fe-2S clusters with a Cys3His ligand set are rare and notably have also been identified in MitoNEET, a protein that was also annotated as a zinc finger. These findings support a role for iron in some zinc-finger proteins. Using electrophoretic mobility shift assays and fluorescence anisotropy, we report that CPSF30 selectively recognizes the AU-rich hexamer (AAUAAA) sequence present in pre-mRNA, providing the first molecular-based evidence to our knowledge for CPSF30/RNA binding. Removal of zinc, or both zinc and iron, abrogates binding, whereas removal of just iron significantly lessens binding. From these data we propose a model for RNA recognition that involves a metal-dependent cooperative binding mechanism.
Collapse
|
43
|
Chen J, Wang B, Chung JS, Chai H, Liu C, Ruan Y, Shi H. The role of promoter cis-element, mRNA capping, and ROS in the repression and salt-inducible expression of AtSOT12 in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2015; 6:974. [PMID: 26594223 PMCID: PMC4635225 DOI: 10.3389/fpls.2015.00974] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 10/23/2015] [Indexed: 05/28/2023]
Abstract
Inducible gene expression is a gene regulatory mechanism central to plant response to environmental cues. The inducible genes are often repressed under normal growth conditions while their expression levels are significantly elevated by conditions such as abiotic stresses. Induction of gene expression requires both cis-acting DNA elements and trans-acting proteins that are modulated through signal transduction pathways. Here we report several molecular events that affect salt induced expression of the Arabidopsis AtSOT12 gene. Promoter deletion analysis revealed that DNA elements residing in the 5' UTR are required for the salt induced expression of AtSOT12. Cytosine methylation in the promoter was low and salt stress slightly increased the DNA methylation level, suggesting that DNA methylation may not contribute to AtSOT12 gene repression. Co-transcriptional processing of AtSOT12 mRNA including capping and polyadenylation site selection was also affected by salt stress. The percentage of capped mRNA increased by salt treatment, and the polyadenylation sites were significantly different before and after exposure to salt stress. The expression level of AtSOT12 under normal growth conditions was markedly higher in the oxi1 mutant defective of reactive oxygen species (ROS) signaling than in the wild type. Moreover, AtSOT12 transcript level was elevated by treatments with DPI and DMTU, two chemicals preventing ROS accumulation. These results suggest that repression of AtSOT12 expression may require physiological level of ROS and ROS signaling.
Collapse
Affiliation(s)
- Jinhua Chen
- Pre-National Laboratory for Crop Germplasm Innovation and Resource Utilization, Hunan Agricultural UniversityChangsha, China
| | - Bangshing Wang
- Department of Chemistry and Biochemistry, Texas Tech University, LubbockTX, USA
| | - Jung-Sung Chung
- Department of Chemistry and Biochemistry, Texas Tech University, LubbockTX, USA
| | - Haoxi Chai
- Department of Chemistry and Biochemistry, Texas Tech University, LubbockTX, USA
| | - Chunlin Liu
- Pre-National Laboratory for Crop Germplasm Innovation and Resource Utilization, Hunan Agricultural UniversityChangsha, China
| | - Ying Ruan
- Pre-National Laboratory for Crop Germplasm Innovation and Resource Utilization, Hunan Agricultural UniversityChangsha, China
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, LubbockTX, USA
| |
Collapse
|