1
|
Ljungman M. Transcription and genome integrity. DNA Repair (Amst) 2022; 118:103373. [PMID: 35914488 DOI: 10.1016/j.dnarep.2022.103373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 11/03/2022]
Abstract
Transcription can cause genome instability by promoting R-loop formation but also act as a mutation-suppressing machinery by sensing of DNA lesions leading to the activation of DNA damage signaling and transcription-coupled repair. Recovery of RNA synthesis following the resolution of repair of transcription-blocking lesions is critical to avoid apoptosis and several new factors involved in this process have recently been identified. Some DNA repair proteins are recruited to initiating RNA polymerases and this may expediate the recruitment of other factors that participate in the repair of transcription-blocking DNA lesions. Recent studies have shown that transcription of protein-coding genes does not always give rise to spliced transcripts, opening the possibility that cells may use the transcription machinery in a splicing-uncoupled manner for other purposes including surveillance of the transcribed genome.
Collapse
Affiliation(s)
- Mats Ljungman
- Departments of Radiation Oncology and Environmental Health Sciences, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Liu Y, Ai C, Gan T, Wu J, Jiang Y, Liu X, Lu R, Gao N, Li Q, Ji X, Hu J. Transcription shapes DNA replication initiation to preserve genome integrity. Genome Biol 2021; 22:176. [PMID: 34108027 PMCID: PMC8188667 DOI: 10.1186/s13059-021-02390-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Early DNA replication occurs within actively transcribed chromatin compartments in mammalian cells, raising the immediate question of how early DNA replication coordinates with transcription to avoid collisions and DNA damage. RESULTS We develop a high-throughput nucleoside analog incorporation sequencing assay and identify thousands of early replication initiation zones in both mouse and human cells. The identified early replication initiation zones fall in open chromatin compartments and are mutually exclusive with transcription elongation. Of note, early replication initiation zones are mainly located in non-transcribed regions adjacent to transcribed regions. Mechanistically, we find that RNA polymerase II actively redistributes the chromatin-bound mini-chromosome maintenance complex (MCM), but not the origin recognition complex (ORC), to actively restrict early DNA replication initiation outside of transcribed regions. In support of this finding, we detect apparent MCM accumulation and DNA replication initiation in transcribed regions due to anchoring of nuclease-dead Cas9 at transcribed genes, which stalls RNA polymerase II. Finally, we find that the orchestration of early DNA replication initiation by transcription efficiently prevents gross DNA damage. CONCLUSION RNA polymerase II redistributes MCM complexes, but not the ORC, to prevent early DNA replication from initiating within transcribed regions. This RNA polymerase II-driven MCM redistribution spatially separates transcription and early DNA replication events and avoids the transcription-replication initiation collision, thereby providing a critical regulatory mechanism to preserve genome stability.
Collapse
Affiliation(s)
- Yang Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Chen Ai
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China
| | - Tingting Gan
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Jinchun Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yongpeng Jiang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xuhao Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China
| | - Rusen Lu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Ning Gao
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Qing Li
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiong Ji
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Jiazhi Hu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Genome Editing Research Center, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
Kajitani GS, Nascimento LLDS, Neves MRDC, Leandro GDS, Garcia CCM, Menck CFM. Transcription blockage by DNA damage in nucleotide excision repair-related neurological dysfunctions. Semin Cell Dev Biol 2021; 114:20-35. [DOI: 10.1016/j.semcdb.2020.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/18/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022]
|
4
|
Landsverk HB, Sandquist LE, Sridhara SC, Rødland GE, Sabino JC, de Almeida SF, Grallert B, Trinkle-Mulcahy L, Syljuåsen RG. Regulation of ATR activity via the RNA polymerase II associated factors CDC73 and PNUTS-PP1. Nucleic Acids Res 2019; 47:1797-1813. [PMID: 30541148 PMCID: PMC6393312 DOI: 10.1093/nar/gky1233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022] Open
Abstract
Ataxia telangiectasia mutated and Rad3-related (ATR) kinase is a key factor activated by DNA damage and replication stress. An alternative pathway for ATR activation has been proposed to occur via stalled RNA polymerase II (RNAPII). However, how RNAPII might signal to activate ATR remains unknown. Here, we show that ATR signaling is increased after depletion of the RNAPII phosphatase PNUTS-PP1, which dephosphorylates RNAPII in its carboxy-terminal domain (CTD). High ATR signaling was observed in the absence and presence of ionizing radiation, replication stress and even in G1, but did not correlate with DNA damage or RPA chromatin loading. R-loops were enhanced, but overexpression of EGFP-RNaseH1 only slightly reduced ATR signaling after PNUTS depletion. However, CDC73, which interacted with RNAPII in a phospho-CTD dependent manner, was required for the high ATR signaling, R-loop formation and for activation of the endogenous G2 checkpoint after depletion of PNUTS. In addition, ATR, RNAPII and CDC73 co-immunoprecipitated. Our results suggest a novel pathway involving RNAPII, CDC73 and PNUTS-PP1 in ATR signaling and give new insight into the diverse functions of ATR.
Collapse
Affiliation(s)
- Helga B Landsverk
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Lise E Sandquist
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sreerama C Sridhara
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Gro Elise Rødland
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - João C Sabino
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Sérgio F de Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Beata Grallert
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Laura Trinkle-Mulcahy
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Randi G Syljuåsen
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
5
|
Yang Y, Liu Z, Selby CP, Sancar A. Long-term, genome-wide kinetic analysis of the effect of the circadian clock and transcription on the repair of cisplatin-DNA adducts in the mouse liver. J Biol Chem 2019; 294:11960-11968. [PMID: 31217280 DOI: 10.1074/jbc.ra119.009579] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/19/2019] [Indexed: 01/27/2023] Open
Abstract
Cisplatin is the most commonly used chemotherapeutic drug for managing solid tumors. However, toxicity and the innate or acquired resistance of cancer cells to the drug limit its usefulness. Cisplatin kills cells by forming cisplatin-DNA adducts, most commonly the Pt-d(GpG) diadduct. We recently showed that, in mice, repair of this adduct 2 h following injection is controlled by two circadian programs. 1) The circadian clock controls transcription of 2000 genes in liver and, via transcription-directed repair, controls repair of the transcribed strand (TS) of these genes in a rhythmic fashion unique to each gene's phase of transcription. 2) The excision repair activity itself is controlled by the circadian clock with a single phase at which the repair of the nontranscribed strand (NTS) and the rest of the genome takes place. Here, we followed the repair kinetic for long periods genome-wide both globally and at single nucleotide resolution by the Excision Repair-sequencing (XR-seq) method to better understand cisplatin DNA damage and repair. We find that transcription-driven repair is nearly complete after 2 days, whereas weeks are required for repair of the NTS and the rest of the genome. TS repair oscillates in rhythmically expressed genes up to 2 days post injection, and in all expressed genes, we see a trend in TS repair with time from the 5' to 3' end. These findings help to understand the circadian- and transcription-dependent and -independent control of repair in response to cisplatin, and should aid in designing cisplatin chemotherapy regimens with improved therapeutic indexes.
Collapse
Affiliation(s)
- Yanyan Yang
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Zhenxing Liu
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Christopher P Selby
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.
| |
Collapse
|
6
|
Blanc A, Dietrich DJ, Perrin DM. Solid-phase synthesis of amanitin derivatives and preliminary evaluation of cellular uptake and toxicity. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Antoine Blanc
- Department of Chemistry; University of British Columbia; Vancouver V6T 1Z1 Canada
| | - David J. Dietrich
- Department of Chemistry; University of British Columbia; Vancouver V6T 1Z1 Canada
| | - David M. Perrin
- Department of Chemistry; University of British Columbia; Vancouver V6T 1Z1 Canada
| |
Collapse
|
7
|
Steurer B, Marteijn JA. Traveling Rocky Roads: The Consequences of Transcription-Blocking DNA Lesions on RNA Polymerase II. J Mol Biol 2016; 429:3146-3155. [PMID: 27851891 DOI: 10.1016/j.jmb.2016.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/04/2016] [Accepted: 11/04/2016] [Indexed: 12/13/2022]
Abstract
The faithful transcription of eukaryotic genes by RNA polymerase II (RNAP2) is crucial for proper cell function and tissue homeostasis. However, transcription-blocking DNA lesions of both endogenous and environmental origin continuously challenge the progression of elongating RNAP2. The stalling of RNAP2 on a transcription-blocking lesion triggers a series of highly regulated events, including RNAP2 processing to make the lesion accessible for DNA repair, R-loop-mediated DNA damage signaling, and the initiation of transcription-coupled DNA repair. The correct execution and coordination of these processes is vital for resuming transcription following the successful repair of transcription-blocking lesions. Here, we outline recent insights into the molecular consequences of RNAP2 stalling on transcription-blocking DNA lesions and how these lesions are resolved to restore mRNA synthesis.
Collapse
Affiliation(s)
- Barbara Steurer
- Department of Molecular Genetics, Erasmus MC, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Erasmus MC, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands.
| |
Collapse
|
8
|
Abstract
Redox homeostasis is crucial for proper cellular functions, including receptor tyrosine kinase signaling, protein folding, and xenobiotic detoxification. Under basal conditions, there is a balance between oxidants and antioxidants. This balance facilitates the ability of oxidants, such as reactive oxygen species, to play critical regulatory functions through a direct modification of a small number of amino acids (e.g. cysteine) on signaling proteins. These signaling functions leverage tight spatial, amplitude, and temporal control of oxidant concentrations. However, when oxidants overwhelm the antioxidant capacity, they lead to a harmful condition of oxidative stress. Oxidative stress has long been held to be one of the key players in disease progression for Huntington's disease (HD). In this review, we will critically review this evidence, drawing some intermediate conclusions, and ultimately provide a framework for thinking about the role of oxidative stress in the pathophysiology of HD.
Collapse
Affiliation(s)
- Amit Kumar
- Burke Medical Research Institute, White Plains, NY, USA
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY, USA
- Department of Neurology, Weill Medical College of Cornell University, New York, NY, USA
| | - Rajiv R. Ratan
- Burke Medical Research Institute, White Plains, NY, USA
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY, USA
- Department of Neurology, Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|