1
|
Gao H, Liu P, He W, Bi F, Hu C, Deng G, Dou T, Yang Q, Li C, Yi G, Sheng O, Dong T. Ripening-stage variations in small metabolites across six banana cultivars: A metabolomic perspective. Food Chem 2025; 478:143658. [PMID: 40054203 DOI: 10.1016/j.foodchem.2025.143658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/02/2025] [Accepted: 02/26/2025] [Indexed: 04/06/2025]
Abstract
Currently, understanding of how banana cultivars differ in metabolism during ripening is limited. This study compared the pulp metabolites of six banana cultivars using NMR. Bananas with B genome were found to have higher amounts of total starch, amylose, amylopectin, and resistant starch compared to those without B genome. NMR identified 21 key metabolites distinguish these cultivars. These metabolites included four soluble sugars, three organic acids, eleven amino acids, one alcohol, one choline, and one other compound. Notably, the levels of four soluble sugars varied significantly among the cultivars. 'Gongjiao' and 'Guangfen No. 1' had a slightly sour taste due to higher levels of malate and citrate. The accumulation of eleven key amino acids differed among varieties and changed unpredictably during ripening. Other important metabolites also played a role in distinguishing six banana varieties. This research provided new insights into how metabolites were used to differentiate between banana cultivars.
Collapse
Affiliation(s)
- Huijun Gao
- Key Laboratory of Tropical and Subtropical Fruit Tree Researchs, Guangdong Province, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, No. 80 Dafeng Two Street, Guangzhou 510640, PR China
| | - Ping Liu
- Guangxi Academy of Specialty Crops, Guilin, Guangxi, PR China
| | - Weidi He
- Key Laboratory of Tropical and Subtropical Fruit Tree Researchs, Guangdong Province, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, No. 80 Dafeng Two Street, Guangzhou 510640, PR China
| | - Fangcheng Bi
- Key Laboratory of Tropical and Subtropical Fruit Tree Researchs, Guangdong Province, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, No. 80 Dafeng Two Street, Guangzhou 510640, PR China
| | - Chunhua Hu
- Key Laboratory of Tropical and Subtropical Fruit Tree Researchs, Guangdong Province, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, No. 80 Dafeng Two Street, Guangzhou 510640, PR China
| | - Guiming Deng
- Key Laboratory of Tropical and Subtropical Fruit Tree Researchs, Guangdong Province, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, No. 80 Dafeng Two Street, Guangzhou 510640, PR China
| | - Tongxin Dou
- Key Laboratory of Tropical and Subtropical Fruit Tree Researchs, Guangdong Province, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, No. 80 Dafeng Two Street, Guangzhou 510640, PR China
| | - Qiaosong Yang
- Key Laboratory of Tropical and Subtropical Fruit Tree Researchs, Guangdong Province, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, No. 80 Dafeng Two Street, Guangzhou 510640, PR China
| | - Chunyu Li
- Key Laboratory of Tropical and Subtropical Fruit Tree Researchs, Guangdong Province, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, No. 80 Dafeng Two Street, Guangzhou 510640, PR China
| | - Ganjun Yi
- Key Laboratory of Tropical and Subtropical Fruit Tree Researchs, Guangdong Province, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, No. 80 Dafeng Two Street, Guangzhou 510640, PR China
| | - Ou Sheng
- Key Laboratory of Tropical and Subtropical Fruit Tree Researchs, Guangdong Province, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, No. 80 Dafeng Two Street, Guangzhou 510640, PR China.
| | - Tao Dong
- Key Laboratory of Tropical and Subtropical Fruit Tree Researchs, Guangdong Province, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Tianhe District, No. 80 Dafeng Two Street, Guangzhou 510640, PR China.
| |
Collapse
|
2
|
Guo L, Liang K, Huang X, Mai W, Duan X, Wu F. Morin Treatment Delays the Ripening and Senescence of Postharvest Mango Fruits. Foods 2023; 12:4251. [PMID: 38231649 DOI: 10.3390/foods12234251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
A 0.005% and 0.01% morin treatment was applied to treat mango fruits stored under ambient conditions (25 ± 1 °C) with 85-90% relative humidity, and the effects on quality indexes, enzyme activity related to antioxidation and cell wall degradation, and gene expressions involved in ripening and senescence were explored. The results indicate that a 0.01% morin application effectively delayed fruit softening and yellowing and sustained the nutritional quality. After 12 days of storage, the contents of soluble sugar and carotenoid in the treatment groups were 68.54 mg/g and 11.20 mg/100 g, respectively, lower than those in control, while the vitamin C content in the treatment groups was 0.58 mg/g, higher than that in control. Moreover, a morin application successively enhanced the activity of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), but reduced the activity of polygalacturonase (PG) and pectin lyase (PL). Finally, real-time PCR and correlation analysis suggested that morin downregulated the ethylene biosynthesis (ACS and, ACO) and signal transduction (ETR1, ERS1, EIN2, and ERF1) genes, which is positively associated with softening enzymes (LOX, EXP, βGal, and EG), carotenoid synthesis enzymes (PSY and, LCYB), sucrose phosphate synthase (SPS), and uncoupling protein (UCP) gene expressions. Therefore, a 0.01% morin treatment might efficiently retard mango fruit ripening and senescence to sustain external and nutritional quality through ethylene-related pathways, which indicates its preservation application.
Collapse
Affiliation(s)
- Lihong Guo
- School of Food Science and Engineering, Foshan University, Foshan 528200, China
| | - Kaiqi Liang
- School of Food Science and Engineering, Foshan University, Foshan 528200, China
| | - Xiaochun Huang
- School of Food Science and Engineering, Foshan University, Foshan 528200, China
| | - Weiqian Mai
- Guangdong Provincial Key Laboratory of Food Intelligent Manufacturing, Foshan 528200, China
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Fuwang Wu
- School of Food Science and Engineering, Foshan University, Foshan 528200, China
- Guangdong Provincial Key Laboratory of Food Intelligent Manufacturing, Foshan 528200, China
| |
Collapse
|
3
|
Chen Q, Ou J, Guo L, Wu F. Study on the effect of icariin on the preservation of postharvest mango fruit. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Qiqi Chen
- College of Food Science and Engineering Foshan University Foshan China
| | - Jiaying Ou
- College of Food Science and Engineering Foshan University Foshan China
| | - Lihong Guo
- College of Food Science and Engineering Foshan University Foshan China
| | - Fuwang Wu
- College of Food Science and Engineering Foshan University Foshan China
- Guangdong Provincial Key Laboratory of Food Intelligent Manufacturing Foshan University Foshan China
| |
Collapse
|
4
|
Gervasi T, Calderaro A, Barreca D, Tellone E, Trombetta D, Ficarra S, Smeriglio A, Mandalari G, Gattuso G. Biotechnological Applications and Health-Promoting Properties of Flavonols: An Updated View. Int J Mol Sci 2022; 23:1710. [PMID: 35163632 PMCID: PMC8835978 DOI: 10.3390/ijms23031710] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
Flavonols are a subclass of natural flavonoids characterized by a remarkable number of biotechnological applications and health-promoting properties. They attract researchers' attention due to many epidemiological studies supporting their usage. They are phytochemicals commonly present in our diet, being ubiquitous in the plant kingdom and, in particular, relatively very abundant in fruits and vegetables. All these aspects make flavonols candidates of choice for the valorization of products, based on the presence of a remarkable number of different chemical structures, each one characterized by specific chemical features capable of influencing biological targets inside the living organisms in very different manners. In this review, we analyzed the biochemical and physiological characteristics of flavonols focalizing our attention on the most promising compounds to shed some light on their increasing utilization in biotechnological applications in processing industries, as well as their suitable employment to improve the overall wellness of the humankind.
Collapse
Affiliation(s)
- Teresa Gervasi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
| | - Antonella Calderaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (E.T.); (D.T.); (S.F.); (A.S.); (G.M.); (G.G.)
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (E.T.); (D.T.); (S.F.); (A.S.); (G.M.); (G.G.)
| | - Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (E.T.); (D.T.); (S.F.); (A.S.); (G.M.); (G.G.)
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (E.T.); (D.T.); (S.F.); (A.S.); (G.M.); (G.G.)
| | - Silvana Ficarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (E.T.); (D.T.); (S.F.); (A.S.); (G.M.); (G.G.)
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (E.T.); (D.T.); (S.F.); (A.S.); (G.M.); (G.G.)
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (E.T.); (D.T.); (S.F.); (A.S.); (G.M.); (G.G.)
| | - Giuseppe Gattuso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.C.); (E.T.); (D.T.); (S.F.); (A.S.); (G.M.); (G.G.)
| |
Collapse
|
5
|
Dong C, Wang J, Hu Y, Xiao W, Hu H, Xie J. Analyses of key gene networks controlling carotenoid metabolism in Xiangfen 1 banana. BMC PLANT BIOLOGY 2022; 22:34. [PMID: 35038993 PMCID: PMC8762954 DOI: 10.1186/s12870-021-03415-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Banana fruits are rich in various high-value metabolites and play a key role in the human diet. Of these components, carotenoids have attracted considerable attention due to their physiological role and human health care functions. However, the accumulation patterns of carotenoids and genome-wide analysis of gene expression during banana fruit development have not been comprehensively evaluated. RESULTS In the present study, an integrative analysis of metabolites and transcriptome profiles in banana fruit with three different development stages was performed. A total of 11 carotenoid compounds were identified, and most of these compounds showed markedly higher abundances in mature green and/or mature fruit than in young fruit. Results were linked to the high expression of carotenoid synthesis and regulatory genes in the middle and late stages of fruit development. Co-expression network analysis revealed that 79 differentially expressed transcription factor genes may be responsible for the regulation of LCYB (lycopene β-cyclase), a key enzyme catalyzing the biosynthesis of α- and β-carotene. CONCLUSIONS Collectively, the study provided new insights into the understanding of dynamic changes in carotenoid content and gene expression level during banana fruit development.
Collapse
Affiliation(s)
- Chen Dong
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science/ Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture/Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Zhanjiang, Guangdong, 524091, China
| | - Jiuxiang Wang
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science/ Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture/Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Zhanjiang, Guangdong, 524091, China
| | - Yulin Hu
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science/ Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture/Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Zhanjiang, Guangdong, 524091, China
| | - Weijun Xiao
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science/ Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture/Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Zhanjiang, Guangdong, 524091, China
| | - Huigang Hu
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science/ Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture/Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Zhanjiang, Guangdong, 524091, China.
| | - Jianghui Xie
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science/ Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture/Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Zhanjiang, Guangdong, 524091, China.
| |
Collapse
|
6
|
Pavun L, Janošević-Ležaić A, Uskoković-Marković S. Spectrophotometric determination of morin in strawberries and their antioxidant activity. ARHIV ZA FARMACIJU 2021. [DOI: 10.5937/arhfarm71-30503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Morin is one of the flavonoids with intensive antioxidant activity. With the aim to use its benefits on human health, there is an increasing trend to pay attention to its content in food or supplements. The simplicity and low cost of spectrophotometric determination based on the formation of a morin complex with Zn 2+ ion (stoichiometric ratio 1 : 1), at pH 7.98 and 392 nm, give it an advantage over other methods that can be used for morin quantification. The concentration range over which the response was linear was 0.151-4.533 mg L-1. The limit of detection (LOD) and the limit of quantification (LOQ) were 0.030 mg L-1 and 0.091 mg L-1 , respectively. The developed method was successfully applied for the determination of the morin content in strawberries. Additionally, the antioxidative abilities of strawberry extracts and morin, determined by DPPH and FRAP tests, were compared and discussed.
Collapse
|
7
|
Jaiturong P, Laosirisathian N, Sirithunyalug B, Eitssayeam S, Sirilun S, Chaiyana W, Sirithunyalug J. Physicochemical and prebiotic properties of resistant starch from Musa sapientum Linn., ABB group, cv. Kluai Namwa Luang. Heliyon 2020; 6:e05789. [PMID: 33376829 PMCID: PMC7758519 DOI: 10.1016/j.heliyon.2020.e05789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/26/2020] [Accepted: 12/16/2020] [Indexed: 11/23/2022] Open
Abstract
Resistant starch (RS), a current health trend, can be obtained from various natural sources. Musa sapientum Linn., ABB group, cv. Kluai Namwa Luang is a good source of RS. This is the first study to investigate the physicochemical properties, RS contents, and prebiotic properties of unpeeled raw banana powder (URB), peeled raw banana powder (PRB), and banana starch (BS) from Kluai Namwa Luang. Their physicochemical properties were characterized by scanning electron microscope, differential scanning calorimeter, and X-ray diffractometer. The RS contents were determined using the Megazyme Resistant Starch Assay Kit. The prebiotic properties are reported as a prebiotic index (PI). The particle morphology of URB, PRB, and BS granules showed a smooth surface with irregular size and shape. Their gelatinization temperatures were 74-78 °C. All samples exhibited typical B-type diffraction patterns. URB contained the highest dietary fiber (9.7 ± 0.2 g per 100 g of dried sample), whereas BS contained the highest RS content (74.1 ± 0.1 g per 100 g of dried sample). Both URB and BS possessed excellent probiotic growth promotion, prebiotic properties with PI values comparable to the commercial inulin, and were highly resistant to digestive enzymes. Therefore, BS from Kluai Namwa Luang is suggested as functional nutrient in health promotion products.
Collapse
Affiliation(s)
- Patthanakorn Jaiturong
- Graduate School, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nachtharinee Laosirisathian
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Busaban Sirithunyalug
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sukum Eitssayeam
- Department of Physics and Materials, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sasithorn Sirilun
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceutical, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wantida Chaiyana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jakkapan Sirithunyalug
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
8
|
Metabolic analysis of salicylic acid-induced chilling tolerance of banana using NMR. Food Res Int 2020; 128:108796. [DOI: 10.1016/j.foodres.2019.108796] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 11/18/2022]
|
9
|
Combination of Transcriptomic, Proteomic, and Metabolomic Analysis Reveals the Ripening Mechanism of Banana Pulp. Biomolecules 2019; 9:biom9100523. [PMID: 31548496 PMCID: PMC6843284 DOI: 10.3390/biom9100523] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 01/03/2023] Open
Abstract
The banana is one of the most important fruits in the world. Bananas undergo a rapid ripening process after harvest, resulting in a short shelf. In this study, the mechanism underlying pulp ripening of harvested bananas was investigated using integrated transcriptomic, proteomic, and metabolomic analysis. Ribonucleic acid sequencing (RNA-Seq) revealed that a great number of genes related to transcriptional regulation, signal transduction, cell wall modification, and secondary metabolism were up-regulated during pulp ripening. At the protein level, 84 proteins were differentially expressed during pulp ripening, most of which were associated with energy metabolism, oxidation-reduction, cell wall metabolism, and starch degradation. According to partial least squares discriminant analysis, 33 proteins were identified as potential markers for separating different ripening stages of the fruit. In addition to ethylene’s central role, auxin signal transduction might be involved in regulating pulp ripening. Moreover, secondary metabolism, energy metabolism, and the protein metabolic process also played an important role in pulp ripening. In all, this study provided a better understanding of pulp ripening of harvested bananas.
Collapse
|
10
|
Yang J, Zeng J, Wen L, Zhu H, Jiang Y, John A, Yu L, Yang B. Effect of morin on the degradation of water-soluble polysaccharides in banana during softening. Food Chem 2019; 287:346-353. [PMID: 30857709 DOI: 10.1016/j.foodchem.2019.02.100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 11/16/2022]
Abstract
The degradation of cell wall polysaccharides is highly associated with the softening process of banana. In this work, banana was treated by morin to delay softening during storage. Water-soluble polysaccharides were extracted from banana pulp at four storage stages. Their levels increased when the banana was green, but decreased when turned to yellow. Three types of polysaccharides were identified by nuclear magnetic resonance spectroscopy, including starches, homogalacturonans and arabinogalactan proteins. (1 → 4)-α-D-galacturonan constructed the backbone of homogalacturonans, which was the leading water-soluble polysaccharide in the last stage. Starch was the dominant polysaccharide at all stages in morin-treated banana. Deassembly of insoluble starch granules and degradation of soluble starches were responsible for its high level in banana. Arabinogalactan proteins were only detected in late stages, and could be a marker for banana deterioration. The inhibited degradation of cell wall polysaccharides contributed to the preservative effect of morin.
Collapse
Affiliation(s)
- Jiali Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Zeng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingrong Wen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Hong Zhu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yueming Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Afiya John
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Limei Yu
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Bao Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|